Programming Guide for
PT-10/12

Portable Data Collector

Copyright © 2005 by ARGOX Information Co., Ltd.

http://www.argox.com

Version: 2.30 2006/10/30



Preface

To satisfy the user’s customized needs, the PT-10/12 provide users to
generate programs for their actual demands. This allows users to collect data,
execute function expression and store the processed data with the application
programs designed by their own.

Developers can use Assembly, C, and C++ to create the program flow. And
developers can also link standard ANSI C function library to meet the demands
through executing the functions of input, output, expression and storage using
the functions provided by PT-10/12.

Later in this manual, you'll learn how to write the program, how to compile the
linking program, how to download renewed codes and how to test simulation
functions. Finally, this manual will also conclude the function illustration of
PT-10/12 for your reference.



Table of Contents

Programming Guide for PT-10/12 Portable Data Collector

1. Program DESION I .ttt re s 4
@ Development ENVIFONMENT........cccccevviiiiiicececceese e 4
@ FUNCLION LIDIary ..o 7
€ Standard Function Library ... 8
@ How to Build YOUTr Program........ccccceeeiiiiciieicieese e 9
2. SIMUIATON ...ttt nre e 13
3. Upgrade User Program.. ... 16
4. SOTEWAIE SUPPOIT ..o 17
SIS 51 NG ] [ Y200 18
6. General LIDFary ... 20
€ Memory Allocation and Management .........c.ccccoeevveeievieecececeeeenens 24
@ Data Conversion ROULINES .......ocociiciieeceee e 25
@ Searching and SOrting ... 26
@ Date and Time FUNCLION ..ociieiieeceee e 27
@ File Manipulation ... e 30
@ Input and OUtPUt ROULINES ......c.coveiiiiiiiiiicceeee e 33
@ System Calls for ColleCtOr ..o 41
@ System Calls for Simulator.........ccccoceviiiiiiiicceceee e 43
@ System Calls for BIOS Setting......ccccocevveiievieiiecceececeeee e 44
@ GraphicS-TeXt MOUE .......ccocviieiiiceeec et e 45
@ Graphics-Graphics MOde.........ccooviiiieiiiieece e 46
@ MeNU ManagemMENTt........c.ccooviiiriiiiiieece ettt 49
7. DBIMS LIDFAIY ... 53
@ DBMS Functions DESCIIPLION ......ccccevveiiiieeecec e 53
8. CL LIDFANY .o 63
S T 1o =) SRR 66
@ BUZZEI oot 69
S 0= 1= g Vo [=T SRS 71
@ File Manipulation ..o e 72
@ LED. .o 84
@ KEYPA ..o e 85
@ LCD e 88
@ COMMUNICALION POIS .ottt 95



€ System ..o,

€ POWE oo 00

D 00
............................................................................. 102



1. Program Design :

€ Development Environment

1. User Program Directory
1.1 Menu Structure:
When open the SDK folder in the CD provided with the PT-10/12, it will
show the structure as the following:

Y fain

—~ . BIN (Binary file) —— *bi
Directory SDK UserFrog (Binary file) in

— ERRE (Errorfile)] —— "arr
— Library (Library file)]— *.alf, *.h
— MWWE (WO ++H.0 Project file)

— OBJ (Object file) —  *.obj
S0T (ARM Project * ani
Manager file) _ AR

L SRC (Sourcefile) — *h, ".c, ™|, "alf

1.2 Function Instruction:

« Binary file is used to store the generated UserProg.bin files through
Armmake. It is needed when updating programs.

« Error file is used to store the generated error or warning files through
Armmake.

« Library file is that the library needed is put to the place while
developing the procedure.

« MVC file is used to develop program in Microsoft Visual C++ 6.0.

« Obiject file is used to store Armmake generation file.

« ARM Project Manager file is used to store ARM Project Manager 2.51
installation files.

« Source file is used to store the program files and the PT-10 function
library used in the programs.

1.3 Adding Source File:
For all the source files under the program has to be placed under SRC
folder, also record the entire needed file name under Makefile (placed
under SRC folder), or under ARM Project Manager file before
proceeding with compiling and linking process.



2. Development Tool Kit Directory
The Development Tool Kit is available from the menufacture or the
suppliers. After installing the Development Tool Kit, run the files store under
ARM251\WINDOWS\SETUPexe, upon installation completion, both DOS
and Windows will be ready for programming.

\ (Compressed File) ------- ARM251 ------- WINDOWS ------- SET.exe

2.1 DOS Environment:
Upon installation, under ARM251\BIN\ folder, it will generate the
following commands for compiling, linking, and generating purpose.

Command Function Extension
Armasm.exe Merge to combine codes | *.s, *.a
Armcc.exe Edit C & C++ files *.c, *.h
Armlink.exe Link object files *.0bj, *.alf
Armmake.exe —a Run MAKEFILE MAKEFILE

2.2 Windows Environment:
Follow the steps above to complete installation and the Windows
system will create a shortcut under (Start\Program\ARM SDT
v2.51\ARM Project Manager shortcut)

-]
)
<8
H

o LB Project Manager

ARME

Click on the shortcut to run ARM Project Manager for Windows.
ARM Project Manager for Windows can add a new project by
including Source and Library in order to generate a Binary file and
then download to the data collector to complete the process.

For detailed operations of ARM Project Manager, please refer to the
help files of ARM Project Manager for Windows.



3. Simulation Directory
3.1 Menu Structure:
When open the SDK folder in the CD provided with the PT-10/12, it will
show the structure as the following:

'\ Main SDK —— Simulator —— De¢bug
Directory
— Release
— Execute
—— Library — *h
— SRC —*h, *.cpp

3.2 Menu Instruction :

- “Debug”,"Release” is used to store the source file that created by
compiling and linking user programs.

« “Executable” is used to store the execution files of simulator and
dynamical linking function library.

« ‘“Library” is used to store the library functions files, including the *.h
files.

« “SRC”is used to store the customerized program files, including the
*.cpp files.

3.3 Adding User Program:

This simulator is required running under the Microsoft Visual C++ 6.0.
The file adding and deleting must be done under this environment. All
the user program files have to be stored in the UPFiles folder. Simply
select the Project\Add to project\Files...function, and record the
UPCode file under Workspace“SDK_SIM. You will be able to view the
file lists through the Workspace windows, and then proceed with
debugging.



&€ Function Library

The user program of data collector can use the PT-10/12 Function
Library provided by the manufactur to complete the data collection
jobs. PT-10/12 Function Library provides variety of services, and
accomplish special functions according to specifical demands.

When using the PT-10/12 Function Library, please add the import
command (#include “UserLib.h” |, “DBMS.h", “LIB_CL.h") into the
user program file (*.c) and the function can be imported. In this case,
the PT-10/12 Function Library file SDKLib.alf is needed. The path
should be:

SDK\UserProg\Library\SDKLib.alf (Refer to User Program Directory)

The PT-10/12 Function Library file SDKLib.alf has always the revision
control issue. For most updated version, please ask helps from your
vendor or the manufactur. If your function library has errors or
requirements for new features, this file needs to be updated.

In order to complete generating the UserProg.bin file, the PT-10/12
Function Library file SDKLib.alf will be needed when compiling and
linking.

The libraries offered at present has: :

1.UserLib.h: General Functions. Please refer General Library of this
document.

2.LIB_CL.h: CL Functions. Please refer CL Library of this document.
3.DBMS.h: Database Manage System. Please refer DBMS Library of
this document.

If want to use the examples of CL and DBMS libraries, please copy
LIB_CL and DBMS examples to UserProg.c in SDK\UserProg\SRC.
Executes the UserProg.apj file in SDK\UserProg\SDT. After compiling,
You must download the binary file to PT-10 and use the example file in
collector.



&€ Standard Function Library

The user program in the data collector can complete the tasks by
using standard C language function library. The function library is
enclosed in the developing environment (ARM Software Development
Toolkit). When the developing environment installation was completed,
you will find the include head file of standard C language function
library in the directory WARM251\Include. The following are the
available include head file list in standard C language function library:
<assert.h>

__assert ;
<ctype.h>

1salnum ; 1salpha ; 1scntrl ; 1sdigit ;1sgraph ; 1slower ; 1Spr; 1Spunct ;
18space ; 1supper ; 1sxdigit ; tolower ;toupper ;
<locale.h>
setlocale; localeconv;
<math.h>
acos; asin; atan; atan2;cos; sin; tan; cosh;
sinh; tanh; exp; frexp;ldexp; log; log10; modf;
pow; sqrt; ceil; fabs;__d_abs; floor; fmod;
<setjmp.h>
setymp; longjmp;
<signal.h>
signal; raise;
<stdio.h>
sprintf; sscanf;
<stdlib.h>
atof; ato1; long atol; strtod;long strtol; strtoul; rand ; srand;
_ANSI rand; _ANSI_ srand; abort; atexit; exit; getenv; system; bsearch;
gsort; abs; long labs;
If you need to use standar C language functions in the user program,
please import the correlated include head files, and import #include
<header file name> in the top of the file. See following sample:
#include <stdio.h>

- If follow the steps above, after running the Compile and Link, all the
correlated functions will be imported and used to generate as the
UserProg.bin file.



€ How to Build Your Program

1. Edit Program:
Developers may use the UserProg.c file under SRC folder in the User
Propgram Directory as the starting file. And you can use int
UserProg(void) as the start point to edit the program. And also you
can freely create a new source file to proceed structuralization
development.

« There is a sample program was enclosed. It is the service system for
Import, Export, Search and Link.And already covers most of the
function-calls and the way to use. There are toally three file were
included:

UserProg.c, UserDef.c, and UserLib.h.

« For regulations and procedures in the developing procedures, please

refer to the “Development Notice”

2. Under DOS Mode:

« Add or Delete Files:
When adding or deleting the source files, the makefile (placed
under the SRC folder) has to be registered first.

« Compile, Link and Create:
To compile and link the program, you can use the armmake
under DOS mode to combine the procedures of compiling and
linking and simplify the generating process. However, the
makefile file (placed under SRC folder) should be provided.
Please see the command below:

armmake —a

3. Under WINDOWS Mode:

« Add or Delete Files:
When adding or deleting the source files, you can complete the
adding and removing direcly under the ARM Executable Image.
The file will be displayed under DebugRel, Debug, and Release.

« Compile, Link and Create:
Here we provide another choice, you can open the default
project UserProg.apj in \SDK\UserProg\SDT to have the
ability to edit, translate,link,and produce the source file. When
compiling, linking, and producing, it's neccesary to use the




Release version to be the last requirement. The steps of
Execution are listed below (Figure 1), Choose the number to 4 in
order, double click the part of the reverse white, and the program
of compilation will be started. After finishing the compilation, click
the number 5, the compile message will be showed. If no mistake
occurs, click number 6 to save. The file will be saved in the
folder\SDK\UserProg\SDT\Release. The file name is
UserProg.bin. At the moment, the file can be downloaded from
Argo Link and be executed on PT-10

I ARM Project Manager - [DASDEVTserProgASD T\ zerProg apj]

File Edit ¥iew Pmoject Tools Window Help

6 5
B(=() ¢ [® | -l &llal= el&E3@) | s

(=D S0, ARM Executable Image

+ & DebugRel

+ LDebu,g

Rele
26 3_5 B %Sources
- v €] SRC\Filel &

[n] WSRO MnchTserProgh
]

+ S5 Incloded FilE
+ &, Objects

Q%} SubProjects
+ % Libraries
+ S Image

5, Miscellanes

4. Update Firmware:

Please refer to the “Upgrade User Program” section.

5. Development Notice:

Enter the program from int UserProg (void) of UserProg.c

Maximum User Task Steak: 8K bytes

Memory allocation: 200K bytes

Maximum capacity of the Binary file (UserProg.bin): 256K bytes.

The fonts needed for the program will have to be exported to a text file
by developer and through Argobuilder’s font generating function to
make the font file and put in D:\Fonts. So developer can take this font
file from the folder and provide to environment initialization function
BOOLUM_Initial (char*passDLFile).

The system will reserve Drive C and D for file storage.

The developer can exchange files using the communication tool
Argolink provided by Argobuilder and collector Remote Link function.

10



« The developer can exchange files using the communication tool File
Transfer DLL (Dynamic Link Library) and collector Remote Link
function.

« The developer can exchange files using the communication tool
Standard Read/Write DLL and the transmission procedures made by
developer.

+ Please check the file path of “SDKLib.alf” error or not when you
update our SDK folder.If there is any error, please modify your
path.You can check the file path as follow figure:

& DebugRel
+ & Debug

Release
!: % Sources
+ Sy IncludedFiles
+ 5 Olbjects
% SubProjects
- % Libraries
_\LibrareSDELib alf
E3 Sy Image

%_) Miscellinea |D:‘.work‘.temjml\PT1D—RTOS'\PT10-221HSDK\Useergmibrary\SDKLib.an |
1 Please check the file path of "SDKLib.alf".

11



6. Development Flow Chart:

Use font editor

h J

Edit UserProg.c and
other *.c (C/C++

language) file

Modify makefile,

¥

record the new files

Batch Process

Armasm.exe
("8, “.a)

/ Armcc.exe

Run armmake.exe -a

Generate LrserPng.bin
(BIN menu)

Use Argol ink for data
collecting function

( Test :esult )

12

Armlink.exe
(".obj, ".alf)

7 (“¢,”h)

||||||||||||||||||||||||||||||||||



2. Simulator

1. Purpose:
To shorten the development time and increase the program stability, a
simulation tool is designed for developer to edit and debug program with
ease. With this simulator, developer will know in advance whether there is
any error in the program code or whether this program meets actual
demands before downloading the program to the collector so that the
correction and debugging can be done immediately.
The simulator provides a platform, which can simulate the same hardware
functionality as a real collector, for example buzzer, LED, scanner, key
buttons, memory allocation and LCD display. Developer can identify
whether the program meets the demands through the simulation test.
2. Developing Environment:
Microsoft Visual C++ 6.0 developing tool needs
to be installed into the workstation. The
developing environment will appear like the
image on the right.
Copy the CD or compressed file provided by the
manufacturer to any disk of the workstation
(Refer to the Simulation Directory in page 5).
3. How to use:
3.1 Complete the developing environment setup listed above.
3.2 Execute \SDK\Simulator\SDK_Sim.dsw in the directory then you can
open the simulation project file. Under VC++6, execute Build\Set
Active Configuration...,select UPCode - Win32 Debug, then click OK to
complete the environment setting.
3.3 Start Simulating:

6.1. Open simulator in VC++6 and select Build\Execute
SDK_Sim.exe. Then a simulator will appear on the desktop (See
image on the next page)

6.2. Press on the User Program Button to run the program.

13



2.Renote Link
3. Sy=sten Tools
4, Jetting

LED Simulation /

LCD Display Simulation
Keypad Simulation

RS-232 Linking Simulation \
3.4 Debug:

6.3. When running simulation, VC++6 will compile
and link all the programs and generate a DLL file to link with the
simulation file in the Execute directory. When compiling and linking,
the error(s) or warning(s) will be displayed on the VC++6 windows to
let user know the error messages.

6.4. The developer will need to remove all the errors and warnings to
ensure the syntax accuracy of the program.

6.5. The logical errors of the program need to be debugged using
VC++6 debugging environment. This debugging environment

R

provides the functions of line-by-line program execution, variable
listing and message hints.

6.6. When executing Menu\Build\Start Debug\Go under VC++6, the
debugging function environment will be started.

3.5 Add or delete user program:

6.7. To add a new user program file, the relative files must be placed
in the UPFiles directory. Developer needs to register all the
necessary files using VC++6 Menu\Project\Add to project\Files...
function into the UPCode files of Workspace”SDK_Sim”. And you
will view the file list in the Workspace window.

6.8. To delete a user program file, all the relative files in UPFiles
directory shoud be deleted. And you will need to completely remove
file names in the UPCode file list of Workspace”SDK_Sim”.

4. File transfer to a Data collector for execution:
If you want to transfer the file passed by the Simulator to a real collector for
operation, you will need to compile and link files through ARM compiler.
And you need to download the Binary file (UserProg.bin) generated by the

14



compiler through Argolink firmware update function to a real collector for
program execution.

The developer must copy the *.cpp or *.h files under SRC directory to
\SDK\UserProg\SRC directory. But the *.cpp file names have to be
changed to *.c. See below for details:

Source Purpose Note
SDK\Simulator\SRC\*.cpp SDK\UserProg\SRC\*.c Convert
SDK\Simulator\SRC\*.h SDK\UserProg\SRC\*.h

To simplify the procedures of file converting and transferring, here we
provide a batch file that user can register the files and after executing this
batch file, the *.cpp file will be automatically converted to *.c file and copied
to \SDK\UserProg\SRC directory. The user will be able to transfer files to
the Simulator or the UserProg by running this batch file. See below for
details:

Update_from_Simulator.bat (Simulation files copy to the UserProg)
copy ..\Simulator\SRC\XXX.cpp .\SRC\XXX.c Program File
copy ..\Simulator\SRC\XXX.h A\SRC\XXX.h Header File
Update_from_UserProg.bat (UserProg files copy to the simulator)
copy ..\UserProg\SRC\XXX.c .\SRC\XXX.cpp Program File
copy ..\UserProg\SRC\XXX.h \SRC\XXX.h Header File

XXX means editable file name. The rest are the preset path.

15



3. Upgrade User Program

1. System Requirement:
Software: Argolink
Hardware: PT-10/12 and a personal computer.
Firmware: Binary file generaged by ARM compiler (UserProg.bin)

2. Upgrade Procedure:
Place the Binary file (UserProg.bin) under \SDK\UserProg\BIN or
\SDK\UserProg \SDT\Release.
Power on PT-10/12 and select Setting\F/W Upgrade in the main menu.
Connect the cable to the PC and wait for Argolink communication.
Execute Argolink and select Tool\F/W Update. Select the Binary file
(UserProg.bin) and complete the firmware update.

3. Execute User Program:
Select PT-10/12 Main Menu 1. Applications and you will find a user
program selection menu. After selecting, the program will be automatically
executed.
There are two ways going back to the Main Menu:
1. Set an option in the program to terminate this UserProg.
2. Remove the battery and restart the collector. Then it will go to the
Main Menu.

4. Set Default Program:
The PT-10/12 can set a UserProg as a preset program. When power on the
collector, this preset program will be always automatically executed. This
function can be terminated when user disabled the setting.
How to set:
Main Menu - 4. Setting - Enter Password (default as 0000) -
2. Boot Config > 1. Mode Setting = 2. Program - User Program
Disable Default Program:
User Program Mode - Turn off power - Turn on (PW+ESC+FN)

16



4. Software Support

To help the developers to create the Windows program, we have provided
the DLL file to help and complete the transferring process between program
and data collector. The transmission was done through either RS232 or USB
interface. There are two transmission agreements: One is using standard
reading and writing; another one is using Argolink as a package for uploading
and downloading. The examples for both ways are also provided for
developer’s reference.

The standard reading and writing uses ReadData to import pointer, then
return the data with specific length. The pointer is a specific buffer.
WriteData is to import the pointer of the buffer that you are going to write,
and then you can write the data with specific length. The data length is
counted by byte.

The method of uploading and downloading through Argolink package is to
upload the files in the data collector disk to PC through Req_UploadFile.
And it also provides some other file management functions. Please refer to
the Function Description for details.

There are two sample programs made for Visual Basic and Visual C++.
You can simply click and run the program directly.

For the function description, please see details in the readme.txt file under
Doc directory.

For environment description, please see below:

Whlain

. SO — Software —— DOC
Directory

— Example +——

YO

—  Library

L+« [Dos Command

1. Doc is used to save the function description file.
2. Example is used to save the two sample programs.

17



3. Library is used to save the DLL file.
4. DOS Command stores at DOS Command function.

5. SDK Utility

The SDK Utility is a tool that will help the developer to complete the
development with the graphic transfer, impage process, and font editing.

Function:

Hsern =
1. BMP > Text: oY [m=x ]
 EMF A Dt BT 5 Tam T Rio |

If the program needs the Disp_Putimage to show THUT A T Te
a rectangle image, you can either use i

Disp_Getlmage to get the graphic source, or use
this function to generate an array buffer to save a
specific rectangle image. After Cut and paste e s,
onto the *.c or *.h program file was done, then b |

EAExR .

use Disp_Putimage to import this array buffer data and the rectangle
graphic can be shown on the screen.

Firstly select the source Bitmap file (*.bmp) and target Text file (*.txt). Then
select BMP - Text button (T) to complete the process.

The source file must be Bitmap black/white non-compressed file, 128 x 64
pixels.

The target file is array buffer text file.

2. BMP-> BMP Text :
If the program needs the Disp_PutBitmap to show a rectangle Bitmap
image, you can either use the files in the disk as the graphic source, or use
this function to generate an array buffer to save a specific rectangle Bitmap
image. After Cut and paste onto the *.c or *.h program file was done, then
use Disp_PutBitmap to import this array buffer data and the rectangle
graphic can be shown on the screen.
Firstly select the source Bitmap file (*.bmp) and target Bitmap Text file
(*.txt). Then select BMP - BMP Text button (E) to complete the process.
The source file must be Bitmap black/white non-compressed file, 128 x 64
pixels.
The target file is array buffer text file.

3. Create Font File:
If using the font in 2 bits and the font in 1 bit not provided in the program,

18



then the font file will be on demand to support font monitoring
After choosing “Making font image(such as figurel,Step 1),click

“Browse”(such as Step 2),and choose the font  [FEEEE ®
. Option 0K
source file(Our program offered £ BME caiertToa | ﬁ
BIG-5,GBK,Shift-jis and ASC-Il),and choose  BMP convert BMP Text
“Making font image(such as Step 3).After Step | s ot maue) T )
- - - - 4
3,it will show a dialog such as figure 2,when e nL
you choosed ID and Language,it will show
other dialog such as figure 3,after chooses,click Source SO D RC L
“OK”,this dialog will be closed and back to ' e
figure 2.Now,you can click “Making” to make a A
. . . . Preview...
new font file,and click “Save Edit..."to save this —
igure
file.
The generated font file path and extension will be LELEELEET 3]
5 . H . Choose 1
shown on the target file field(Such as figure i | Language &y ee Lankuage
. 16 —|||l1eyeFont
1,Source File). e s 18y
] Faont: ]
-ont and L anguage choic:eSWIE SEEC [ Making. ...
|Times Mew Roman {Central Eurgy |N0rma| | 12X8 j Ok | thp 5
Tahoma (Turkish) - Open...
Tahoma (Yiethamese) Bold CANCEL
Tahoma (Western) )
Times Mew Roman (arabic)
Tmes Mesw Roman altic Watch the Font after ép 6
Times Mew Roman (Cenfral Eusd E << | Goto == | Exit ‘
Preview
ABCDE Descripti
O e ption
Message
FontID @ 16
Font Type
Times Mew Rorman, 12%3,MNormal,
Figure 3 Total : 224 characters

19

Figure 2



6. General Library

Function

Table 6-1 General Functions list
Description

Memory Allocation and Management

Tfree

Tmalloc

Data Conversion
Routines

__itoa

__ltoa

__ultoa

Searching and Sorting
SearchRowOflLookupFile

Time Function
GetDateTimeFormat

GetRTCDate
GetRTCHour
GetRTCMinute
GetRTCMonth
GetRTCSecond
GetRTCYear
SetDisplayDateTime

File Manipulation

_fclose

_fcloseAll

_filelength
_fopen

Use the Tfree to release an allocated storage block to the
pool of free memory.

Use Tmalloc to allocate memory for an array of a given
number of bytes, not exceeding 200K B.

Use __itoa to convert an integer value to a null-terminated
character string.

Use __Itoa to convert a long integer value to a
null-terminated character string.

Use __ultoa to convert an unsigned long integer value to a

character string.

Use SearchRowOfLookupFile to search the data matching

to index field in the index files.

Use GetDateTimeFormat to get different format of date
and time from RTC.

Use GetRTCDate to get Date of RTC.

Use GetRTCHour to get Hour of RTC.

Use GetRTCMinute to get Minitue of RTC.

Use GetRTCMonth to get Month of RTC.

Use GetRTCSecond to get Second of RTC.

Use GetRTCYear to get Year of RTC.

Use SetDisplayDateTime to setup and show Date and Time
on the bottom of display.

Use _fclose to close a file opened earlier for buffered
input/output using _fopen.

Use _fcloseAll to close all files opened for buffered
input/output with _fopen or tmpfile.

Use _filelength to dertimine the length of a file in bytes.
Use _fopen to open a file for buffered input/output

20



_fopenLookup

_fread

_fseek

_fwrite

DelFile
Input and Output
Routines

printf

printfA

_scanf

_scanf Num

_scanf password

_scanfctrl

_scanner_Keypad_Set

operations.

Use _fopenLookup to open an index file for buffered
input/output operations.

Use _fread to read a specified number of data items, eachof
a given size, from the current position in a file opened for
buffered input. The current position is updated after the
read.

Use _fseek to move to a new position in a file opened for
buffered input/output.

Use _fwrite to write a specified number of data itmes, each
of a given size, from a buffer to the current position in a
file opened for buffered output. The current position is
updated after the write.

Delete the file in Disc C.

Use printf to write character strings and vlues of C
variables, formatted in a specified manner, to display
screen.

Use _printfA to write character strings and values of C
variables, formatted in a specified manner to specified
device.

Use _scanf to read character strings from the standard
input file stdin and covert the strings to values of C
variables according to specified formats.

Use _scanf_Num to read character strings(only for number
0~9) from the standard input file stdin and covert the
strings to values of C variables according to specified
formats.

Use_scanf_password to read character strings(only display
* for the passwrd ) from the standard input file stdin and
covert the strings to values of C variables according to
specified formats.

Use _scanfctrl to set that scanning the bar code after press
“Scan” key, direct input scans or not.

When using _scanf, _scanf Num or _scanf password
functions,use _scanner_Keypad_Set can enable/disable
keypad.

21



Buzzer IND

getch

getche

kbhit
kbhit GetScan_BarType

kbhit GetScan_Data

kbhit GetScan_Datal.en

LED_IND
Uart0_Close

Uart0_Open

Uart0_Read

Uart0_Write

System Calls
System Calls-Data
Collector

Delay

RunRemotelLink
RunRemotelLinkA
UM_Initial

UM _InitialA

System Calls-Simulator
BackupDataFiletoPC
BackupDataFiletoPCA
CopyFileToTerminal

SaveFileInPC
SIMULATOR_END

Use Buzzer_IND to enable the buzzer by a specified sound
format.

Use Getch to read a character from the keyboard without
echoing it to the display.

Use Getche to read a character from the keyboard and
echoing it to the display.

Use Kbhit to check if any key is going to be read.

Use kbhit_GetScan_BarType function to get read barcode
type when TM_SCAN is returned.

Use kbhit_GetScan_Data function to get read barcode data
when TM_SCAN is returned.

Use kbhit_GetScan_Datalen to get read barcode data
length when Kbhit returns TM_SCAN.

Use LED_IND function to control LED status

Use Uart0)_Close to close the serial port (UART) of
collector or simulator.

Use Uart0_Open to open the srial port (UART) of collector
or simulator.

Use Uart0_Read to read a specified number of byte data
from the serial port (UART) of collector or simulator.

Use Uart0_Write to write a specified number of byte data
to the serial port (UART) of collector or simulator

Use Delay to suspend program execution for a specified
number of milliseconds.

Use RunRemoteLink to call the transmission function for
user to upload or download files.

Use UM _Initial to execute user program initialization.

Use BackupDataFiletoPC to copy data file to C:\Data
directory in PC.

Use CopyFileToTerminal to copy PC files to simulator
disk.

Use SaveFileInPC to store the data field in buffer to PC.
Use SIMULATOR_END to make the termination of

22



SIMULATOR_START

System Calls-BIOS
Setting
SetUserDefineSetting

Graphics
Graphics-Text modes

Clrline

Clrscr

CursorGetYLinePos

CursorMoveLine

CursorReverseDisable

CursorReverseEnable

Graphics-Graphics
modes

Disp_Clear

Disp_DrawBox

Disp_DrawLine

Disp_Getlmage

Disp_PutBitmap

Disp_Putlmage

Disp_Reverse
Disp_Repaint

Graphics-Menu Mode
Menu_AddSubltem

simulator develoing.
Use SIMULATOR_START to make the initialization of

simulator developing.

Use SetUserDefineSetting to set all the parameters as

user’s wish, not necessary to set them up in BIOS.

Use Clrline to clear the contents of the whole line which
the cursor located, and fill up with the current text window
background color.

Use CIrscr to clear the contents in the text window, and fill
up with the current text window background color.

Use CursorGetYLinePos to return the current cursor line
position.

Use CursorMoveL.ine to move cursor to the specified line
position.

Use CursorReverseDisable to disable cursor.

Use CursorReverseEnable to enable cursor.

Use Disp_Clear to clear any size of rectangle display
space.

Use Disp_DrawBox to make a rectangle hollowed box on
the display.

Use Disp_DrawLine to make a straight line on the display.
Use Disp_Getlmage to get any size of rectangle screen
image, and store into a specified buffer.

Use Disp_PutBitmap to put a bitmap drawing on the
display.

Use Disp_Putlmage to display previous stored rectangle
screen image stored by Disp_Getlmage in the buffer.

Use Disp_Reverse to reverse the rectangle screen image.

Use Disp_Repaint to repaint the rectangle screen image.

Use Menu_AddSubltem to increase the items and functions

23



Menu_AddSubltem H

in the menu.
Use Menu_AddSubltem_H to increase the items and

Menu_Create

Menu_Destory

Menu_Run

Menu_SetRent

functions in the menu and hiding setup.

Use Menu_Create to provide the function of initialization
for a cycling menu.

Use Menu_Destory to remove the function of cycling
menu.

Use Menu_Run to enable the cycling menu function
initialized by Menu_Create.

Use Menu_Setrent to set the cycling menu function’s scroll

range.

€ Memory Allocation and Management

Tfree
Purpose -

Syntax -
Example call :
Includes -

Description :

Tmalloc
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

Use the Tfree to release an allocated storage block to the pool of free
memory.

void Tfree(void *mem_address);

Ttree(buffer);

“UserLib.h”

The Tfree function returns to the pool of free memory a blockof

#include

memory that was allocated earlier by Tmalloc. The address of the
block is specified by the argument mem_address, which is a
pointer to the starting byte of the block. A NULL pointer argument
is ignored by Tfree.

Use Tmalloc to allocate memory for an array of a given number of
bytes, not exceeding 200KB.

void *Tmalloc(size t num_bytes);

buffer = (char *)Tmalloc(100*sizeof(char));

“UserLib.h”

The Tmalloc function allocates the number of bytes requested in the

#include

argument num_bytes by calling internal Turbo C heap management
routines. The Tmalloc function will work properly for all memory
models.

The Tmalloc function returns a pointer that is the starting address of
the memory allocated. The allocated memory is properly aligned (the

24



Comments

address of the first byte meets the requirements for storing any type
of C variable). If the memory allocation is unsuccessful because of
insufficient space or bad values of the arguments, a NULL is
returned.

Note that when using Tmolloc to allocate storage for a specific data
type, you should cast the returned void pointer to that type.

€ Data Conversion Routines

itoa
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

[toa
Purpose -

Syntax -
Example call :

Includes :

Use __itoa to convert an integer value to a null-terminated character
string.

char * itoa (int value, char *string, int radix);

__itoa(32, buffer, 16); /* buffer will contain “20” */

#include “UserLib.h”

The __itoa function converts the int argument value into a
null-terminated character string using the argument radix as the base
of the number system. The resulting string with a length of up to 17
bytes is saved in the buffer whose address is given in the argument
string. You must allocate enough room in the buffer to hold all digits
of the converted string plus the terminating null character (\0). For
radixes other than 10, the sign bit is not interpreted; instead, the bit
pattern of value is simply expressed in the requested radix. The
argument radix specifies the base (between 2 and 36) of the number
system in which the string representation of value is expressed. For
example, using either 2, 8, 10, or 16 as radiX, you can convert value
into its binary, octal, decimal, or hexadecimal representation,
respectively. When radix is 10 and the value is negative, the
converted string will start with a minus sign.

The __itoa function returns the pointer to the string of degits (i.c., it

returns the argument string).

Use __Itoa to convert a long integer value to a null-terminated
character string.

char *  Itoa (long value, char *string, int radix);
__1toa(0x10000, string, 10); /* string = “65536” */

#include “UserLib.h”

25



Description :  The  Itoa function converts the long argument value into acharacter
string using the argument radix as the base of the number system. A
long integer has 32 bits when expressed in radix 2, so the string can
occupy a maximum of 33 bytes with the terminating null character.
The resulting string is returned in the buffer whose address is given
in the argument string. The argument radix specifies the base
(between 2 and 36) of the number system in which the string
representation of value is expressed. For example, using either 2, 8,
10,0r 16 as radix, you can convert value into its binary, octal,
decimal, or hexadecimal representation, respectively. When radix is
10 and the value is negative, the converted string will start with a
minus sign.

Returns ©  The  Itoa function returns the pointer to the converted string (i.e., it
returns the argument string).

ultoa

Purpose ©  Use __ultoa to convert an unsigned long integer value to a character

string.
Syntax : char *  ultoa (unsigned long value, char *string, int radix);
Example call :  ultoa(0x20000, string, 10); /* string = “131072” */

Includes :  #include “UserLib.h”

Description :  The __ultoa function converts the unsigned long argument value into
a null-terminated character string using the argument radix as the
base of the number system. A long integer has 32 bits when
expressed in radix 2, so the string can occupy a maximum of 33 bytes
with the terminating null character. The resulting string is returned by
__ultoa in the buffer whose address is given in the argument string.
The argument radix specifies the base (between 2 and 36) of the
number system in which the string representation of value is
expressed. For example, using either 2, 8, 10, or 16 as radix, you can
convert value into its binary, octal, decimal, or hexadecimal
representation, respectively.

Returns ©  The __ ultoa function returns the pointer to the converted string (i.e.,

it returns the argument string).

&€ Searching and Sorting
SearchRowOfL ookupFile

26



Purpose -

Syntax -

Example call :

Includes :

Description :

Returns :

Comments

Use SearchRowOfLookupFile to search the data matching to index
field in the index files.

Char *SearchRowOfLookupFile(char *pssLookupFile, int
nLookupFileSize, int ulStartByte, int nIndexLen, char *pssData, int
nDatalen);

pssSearchData = SearchRowOfLookupFile(pssLookupFile,
unLookupFileSize, 0, 10, acMealOrdered, strlen(acMealOrdered));
#include “UserLib.h”

The SearchRowOfLookupFile function will search, according to the
continuous address of disk specified by passData in the
passLookupFile and the continuous space length nLookupFileSize,
the index fields which are matching with pssData and return the first
character address of the data line so that user can make further record
line field data processing. The ulStartByte will define the index field
to the starting byte address of each record line. nindexLen will
determine the data length of index field, and also the same data
length of pssData correspondent to the index field as well. When the
data length nDatalLen of passData is less than the index field data
length nindexLen, a Null will be returned to express that there is no
data field was corresponded.

If the data is found, the SearchRowOfLookupFile function returns the
first character address of the data line. If it fails to search the data, it
returns NULL.

Note that the index file is placed under D:\Lookup directory in the
virtual disk.

€ Date and Time Function

GetDateTimeFormat

Purpose -

Syntax -
Example call :
Includes -

Description :

Use GetDateTimeFormat to get different format of date and time
from RTC.

int GetDateTimeFormat(char *pssBuffer, int nType);

char accTemp[20]; GetDateTimeFormat(accTemp, 34);

#include “UserLib.h”

The GetDateTimeFormat function will output different format of
time and date as shown below, according to the input of different
nType. The size of buffer should be larger than 20Bytes.

27



Returns :

GetRTCDate
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

GetRTCHour
Purpose -
Syntax -
Example call :
Includes :

Description :

nType pssBuffer nType pssBuffer
1 3/14/2001 21 14/3 01
2 3/14/01 22 14-3-01
3 3/14 23 14.3.01.
4 3.14. 24 2001/3/14
5 03/14/2001 25 2001-03-14
6 03/14/01 26 2001.03.14
7 14-Mar-2001 27 2001 03 14
8 14-Mar-01 28 01/3/14
9 14-Mar 29 01/03/14
10 14/03/01 30 0103 14
11 14/03 01 31 Mar-01
12 14-03-01 32 March-01
13 14.03.01 33 March 14, 2001
14 14/03/2001 34 3/14/01 1:30 PM
15 14/03 2001 35 3/14/01 13:30
16 14-03-2001 36 2001/3/14 1:30 PM
17 14.03.2001 37 2001/3/14 13:30
18 14.3.2001 38 01/3/14/ 1:30 PM
19 14.3.2001. 39 01/3/14/ 13:30
20 14/3/01

The GetTimeDateFormat function returns the length of characters
string and data in buffer. When the value of passBuffer is NULL, it

will only return the character string length.

Use GetRTCDate to get Date of RTC.

unsigned char GetRTCDate(void);

usDate = GetRTCDate();

#include “UserLib.h”

The GetRTCDate function will transfer the Date of Real Time Clock
to a character string. The output format is 1~31.

The function returns Date 1~31.

Use GetRTCHour to get Hour of RTC.

Unsigned char GetRTCHour(void);

usHour = GetRTCHour();

#include “UserLib.h”

The GetRTCHour function will transfer the Hour of Real Time Clock

28



Returns :

to a character string. The output format is 0~23.

The function returns Hour 0~23.

GetRTCMinute

Purpose -
Syntax -
Example call :

Use GetRTCMinute to get Minitue of RTC.
unsigned char GetRTCMinute(void);
usMinute = GetRTCMinute();

Includes :  #include “UserLib.h”
Description :  The GetRTCMinute function will transfer the Minute of Real Time
Clock to a character string. The output format is 0~59 -
Returns ' The function returns Minitues 0~59.
GetRTCMonth
Purpose :  Use GetRTCMonth to get Month of RTC.
Syntax . unsigned char GetRTCMonth(void);

Example call :

usMonth = GetRTCMonth();

Includes :  #include “UserLib.h”
Description - The GetRTCMonth function will transfer the Month of Real Time
Clock to a character string. The output format is 1~12 °
Returns ©  Thue function returns Month 1~12.
GetRTCSecond
Purpose :  Use GetRTCSecond to get Second of RTC
Syntax :  Unsigned char GetRTCSecond(void);
Example call :  usSecond = GetRTCSecond();
Includes :  #include “UserLib.h”
Description :  The GetRTCSecond function will transfer the Second of Real Time
Clock to a character string. The output format is 0~59.
Returns :  The function returns Second 0~59 -
GetRTCYear
Purpose :  Use GetRTCYear to get Year of RTC.
Syntax :  unsigned char GetRTCYear(void);
Example call :  usYear = GetRTCYear();
Includes :  #include “UserLib.h”
Description :  The GetRTCVYear function will transfer the Year of Real Time Clock
to a character string. The output format is 00~99.
Returns :  The function returns Year 00~99 -

SetDisplayDateTime

Purpose -

Syntax -

Use SetDisplayDateTime to setup and show Date and Time on the
bottom of display.
void SetDisplayDateTime(BOOL bShow);

29



Example call :
Includes :

Description :

SetDisplayDateTime(TRUE);
“UserLib.h”

The SetDisplayDateTime function will show Time and Date on the

#include

bottom of display and start or close by bShow setting.

€ File Manipulation

fclose
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

fcloseAll
Purpose -

Syntax -
Example call :
Includes -

Description :

filelength
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

Use _fclose to close a file opened earlier for buffered input/output
using _fopen.

int _fclose( TFILE *file pointer);

_fclose(infile);

“UserLib.h”

The _fclose function closes the file specified by the argument

#include

file_pointer. This pointer must have been one returned earlier when
the file was opened by _fopen. If the file is opened for writing, the
contens of the buffer associated with the file are flushed before the
file is closed. The buffer is then released.

If the file is successfully closed, _fclose returns a zero. In case of an

error, the return value is equal to the constant EOF.

Use _fcloseAll to close all files opened for buffered input/output with
_fopen or tmpfile.

void _fcloseAll(void);

_fcloseAll();

“UserLib.h”

The _fcloseAll function closes all files that have been opened by
_fopen or tmpfile for buffered I/0. Buffers associated with files

#include

opened for writing are written out to the corresponding file before

closing.

Use _filelength to dertimine the length of a file in bytes.

size t filelength( TFILE* file pointer);

file size = _filelength(infile);

“UserLib.h”

The _filelength function returns the size in number of bytes of the file

#include
specified in the argument file_pointer. This pointer should be the

return value of earlier opened file by _fopen.

The integer value returned by _filelength is the size of the file in

30



fopen
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

number of bytes.

Use _fopen to open a file for buffered input/output operations.
_TFILE* fopen(const char*filename, const char *access mode);
input_file = fopen("c:\\data\\order.dat", "r");

#include “UserLib.h”

The fopen function opens the file specified in the argument filename.
The type of operations you intend to perform on the file must be
given in the argument access_mode. The following table explains the
values that the access_mode string can take:

Access Interpretation
Mode String
r Opens file for read operations only. The _fopen
function fails if the file does not exist.
W Opens a new file for writing. If the file exists, its
contents are destroyed.
r+ Opens an existing file for both read and write
operations. Error is returned if file does not exist.
w+ Creates a file and opens it for both reading and
writing. If file exists, current contents are
destroyed.
If the file is opened successfully, _fopen returns a pointer to the file.
Actually, this is a pointer to a structure of type _TFILE, which is
defined in the header file. The actual structure is allocated elsewhere
and you do not have to allocate it. In case of an error, _fopen returns
a NULL.

fopenlLookup

Purpose -

Syntax -
Example call :
Includes -

Description :

Use _fopenLookup to open an index file for buffered input/output
operations.

char * fopenLookup(char *pssFName, unsigned int* pulSize);

data pointer = "D:\\Lookup\\MenuLook.dat", &unFileSize);
#include “UserLib.h”

The _fopenLookup function opens an index file in the path specified
by psskFName pointer. It returns a pointer to the first byte of the index
file continuous space block and writes the length of the continuous
space block to the location specified by the pulSize pointer. The

index file is a continuous space block, which the data was stored by

31



Returns :

fread
Purpose -

Syntax -

Example call :
Includes :

Description :

Returns :

fseek
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

turns.

If the file is opened successfully, _fopenLookup returns a pointer to
the file continuous space block. Actually, this is a pointer to the
location of continuous space block. In case of an error,
_fopenLookup returns a NULL.

Use _fread to read a specified number of data items, eachof a given
size, from the current position in a file opened for buffered input. The
current position is updated after the read.

size t fread(const void *buffer, size t size, size t count, TFILE
*file pointer);

Numread = _fread(buffer, sizeof(char), 80, infile);

#include “UserLib.h”

The fread function reads count data items, each of size bytes, starting
at the current read position of the file specified by the argument
file_pointer. After the read is complete, the current position is
updated. You must allocate storage for a buffer to hold the number of
bytes that you expect to read. This buffer is a pointer to a void data
type.

The _fread function returns the number of items it successfully read.

Use _fseek to move to a new position in a file opened for buffered
input/output.

int _fseek( TFILE *file pointer, long offset, int origin);
_fseek(infile, 0, SEEK SET); /* Go to the beginning */

#include “UserLib.h”

The fseek function sets the current read or write position of the file
specified by the argument file_pointer to a new value indicated by
the arguments “off-set” and “origin”. The

“offset” is a long integer indicating how far away the new position is
from a specific location given in “origin”. The following table

explains the possible value of “origin”.

Origin Interpretation
SEEK SET Beginning of file.
SEEK CUR Current position in the file.

When successful, _fread returns a zero. In case of error, _fread

32



fwrite

Purpose -

Syntax -
Example call :

Includes :

Description :

Returns :

DelFile

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

returns a non-zero value.

Use _fwrite to write a specified number of data itmes, each of a given
size, from a buffer to the current position in a file opened for buffered
output. The current position is updated after the write.

size t fwrite(const void *buffer, size t size, size t count, TFILE
*file pointer);

numwrite = _fwrite(buffer, sizeof(char), 80, outfile);

“UserLib.h”

The fwrite function writes count data items, each of size bytes, to

#include

the file specified by the argument file_pointer, starting at the current
position. After the write operation is complete, the current position is
updated. The data to be written is in the buffer whose address is
passed to _fwrite in the argument buffer.

The _fwrite function returns the number of items it actually wrote.

Delete the file in Disc C.

unsigned short DelFile(const char *path name);
DelFile(*“c:\\data\\order.dat™);

“UserLib.h”

The DelFile function can delete a file that is existed.If you want to

#include

delete a file that is opened by _fopen function,pleace use the function
of _fclose to close the file first,that can avoid delete error.
It expresses that succeed in deleting to pass 0 back, not 0 value

represent and fail.

€ Input and Output Routines

printf

Purpose -

Syntax -
Example call :
Include -

Description :

Use printf to write character strings and vlues of C variables,
formatted in a specified manner, to display screen.

int _printf(const char *format string, ...);

_printf(““The product of %d and %d is %d\n”, x, y, x*y);
“UserLib.h”

The _printf function accepts a variable number of arguments and

#include

prints them out to display screen. The value of each argument is
formatted according to the codes embedded in the format
specification format_string. If the format_string does not contain a %

character (except for the pair %%, which appears as a single % in the

33



Returns :

printfA

Purpose -

Syntax -

Example call :

Include :

Description :

Returns

scanf

Purpose -

Syntax -
Example call :
Includes -

Description :

output), no argument is expected and the format_string is written out
to display screen. For the complete format specification accepted by
the _printf function, please refer to the same function in Turbo C++.
The _printf function returns the number of characters it has printed.

In case of error, it returns EOF

Use _printfA to write character strings and values of C variables,
formatted in a specified manner to specified device.

int _printfA(int device, char *format_string, ...);

_printfA(2, “The product of %d and %d is %d\n”, x, y, x*y);
“UserLib.h”

The _printfA function accepts a variable number of arguments and

#include

prints them out to the specified device (as following table). The value
of each argument is formatted according to the codes embedded in
the format specification format_string. If the format_string does not
contain a % character (except for the pair %%, which appears as a
single % in the output), no argument is expected and the
format_string is written out to display screen. For the complete
format specification accepted by the _printfA

function, please refer to the same function printf in Turbo C++.

Device No. Device name
0 Serial port Uart 0
1 Serial port Uart 1
2 Display screen
3 Buffer pointer format_string (write back)

The _printfA function returns the number of characters it has printed.

In case of error, it returns EOF.

Use _scanf to read character strings from keyboard (standard input
device) and convertthe strings to values of C variables accordin to

specified formats. As example, you can use _scanf to read a value

into a short integer from keyboard.

int _scanf(const char *format_string, ...);

_scanf(“ %d:%d:%d”, &hour, &minute, &second);

“UserLib.h”

The _scanf function accepts a variable number of arguments, which it

#include

34



Returns :

scanf Num

Purpose -

Syntax -
Example call :
Includes -

Description :

interprets as addresses of C variables, and reads character strings,
representing their values. It converts them to their internal
representations using formatting commands embedded in the
argument format_string, which must be present in a call to _scanf.
The interpretation of the variables depends on the format_string. The
formatting command for each variable begins with a % sign and can
contain other characters as well. A whitespace character (a blank
space, a tab, or a new line) may cause _scanf to ignore whitespace
characters from keyboard. Other nonwhitespace characters,
excluding the % sign, cause _scanf to ignore each matching character
from the input. It begins to interpret the first nonmatching character
as the value of variable that is being read.

For each C variable whose address is included in the argument list to
_scanf, there must be a format specification embedded in the
format_string. For the complete format specification accepted by the
_scanf function, please refer to the scanf function in Turbo C++.

If you want input a float value, the value type is ““ double *, not
“float .

The _scanf function returns the number of input items that were
successfully read, converted, and saved in variables. A return value
equal to EOF means that an end-of-file was encountered during the

read operation.

Use _scanf_Num to read character strings(only for number 0~9) from
the standard input file stdin and covert the strings to values of C
variables according to specified formats.

int _scanf Num(const char *format_string, ...);

_scanf Num (*“ %d:%d:%d”, &hour, &minute, &second);

#include “UserLib.h”

The _scanf_Num function accepts a variable number(Only 0 to 9) of
arguments, which it interprets as addresses of C variables, and reads
character strings, representing their values. It converts them to their
internal representations using formatting commands embedded in the
argument format_string, which must be present in a call to
_scanf_Num.

The interpretation of the variables depends on the format_string. The
formatting command for each variable begins with a % sign and can

contain other characters as well. A whitespace character (a blank

35



Returns :

space, a tab, or a new line) may cause __scanf_Num to ignore
whitespace characters from keyboard. Other nonwhitespace
characters, excluding the % sign, cause __scanf_Num to ignore each
matching character from the input. It begins to interpret the first
nonmatching character as the value of variable that is being read.
For each C variable whose address is included in the argument list to
_scanf_Num, there must be a format specification embedded in the
format_string. For the complete format specification accepted by the
_scanf function, please refer to the scanf function in Turbo C++.

If you want input a float value, the value type is ““ double *, not
“float “.

The_scanf_Num function returns the number of input items that were
successfully read, converted, and saved in variables. A return value
equal to EOF means that an end-of-file was encountered during the

read operation.

scanf password

Purpose -

Syntax -
Example call :
Includes -

Description :

Use _scanf_password to read character strings(only display * for the
passwrd ) from the standard input file stdin and covert the strings to
values of C variables according to specified formats.

int _scanf password(const char *format_string, ...);

_scanf password (“ %d:%d:%d”, &hour, &minute, &second);
#include “UserLib.h”

The _scanf_password function accepts a variable number arguments,
which it interprets as addresses of C variables, and reads character
strings, representing their values. It converts them to their internal
representations using formatting commands embedded in the
argument format_string, which must be present in a call to
_scanf_password.

The interpretation of the variables depends on the format_string. The
formatting command for each variable begins with a % sign and can
contain other characters as well. A whitespace character (a blank
space, a tab, or a new line) may cause __scanf_password to ignore
whitespace characters from keyboard. Other nonwhitespace
characters, excluding the % sign, cause __scanf_password to ignore
each matching character from the input. It begins to interpret the first
nonmatching character as the value of variable that is being read.
For each C variable whose address is included in the argument list to
_scanf_password, there must be a format specification embedded in

36



Returns :

scanfctrl
Purpose -

Syntax -
Example call :
Includes -

Description :

the format_string. For the complete format specification accepted by
the _scanf function, please refer to the scanf function in Turbo C++.
If you want input a float value, the value type is ““ double *, not
“float .

The_scanf_password function returns the number of input items that
were successfully read, converted, and saved in variables. A return
value equal to EOF means that an end-of-file was encountered during

the read operation.

Use _scanfctrl to set that scanning the bar code after press “Scan” key,
direct input scans or not. The default value 1s input manually

void _scanfctrl(int scanfctrl);

_scanf(0);
#include “UserLib.h”

The fountion for _scanctr/ will choose to store the data of Scan by the

choice of “scanfctrl”, meaning the following of “scanfctr]” :

scanfctrl Interpretation
O(default) After press Scan key, you need to press ENT
to store the data of Scan.
1 After press Scan key, you needn’t to press

ENT and it will store the data of Scan.

scanf Keypad Set

Purpose -

Syntax -
Example call :
Includes -

Description -

Returns

Buzzer IND

Purpose -
Syntax -

When using _scanf, scanf Num or _scanf password functions,use
_scanner_Keypad_Set can enable/disable keypad.

int _scanner Keypad_ Set(int set);

_scanner_Keypad Set (0);

“UserLib.h”

The fountion for _scaner Keypad Set will choose to enable/disable

#include

keypad of Scan by the choice of “set”, meaning the following of “set” :

scanfctrl Interpretation
0 Disable keypad.
1(default) Enable Keypad.

0 : Set disable keypad.
1 : Set enable keypad.

-1 : Set error.

Use Buzzer_IND to enable the buzzer by a specified sound format.
void Buzzer IND(int nIND Type);

37



Example call :
Includes :

Description :

getch
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

getche
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

Buzzer IND(3);
“UserLib.h”

The Buzzer IND function will select buzzer format and sound

#include

according to NIND_Type. The sound format is as following :

Sound format Sound description

BUZZER KEYPRESS Keyboard
BUZZER SCANED Scanner good read
BUZZER FILEGOT Got file

BUZZER BOOT Power on
BUZZER TEST Test

BUZZER _WARNING Warning

BUZZER LOWBATTERY Battery low warning

Use Getch to read a character from the keyboard without echoing it
to the display.

int getch(void);

In_char = getch();

“UserLib.h”

The Getch function reads a character from the keyboard and the

#include

character is not echoed to the display.

The Getch function returns the character read from the keyboard:
™ 0, TM 1, T™ 2, TM 3,T™ 4, TM 5,TM 6,TM 7, TM 8,
™ 9, TM _DOT, TM_CANCEL, TM_ALPHA, TM_FN, TM_ESC,
T™ PW, TM_ENT, TM_SCAN, TM_UP, TM_DOWN, TM_LEFT,
TM_RIGHT, TM_TIMEOUT -

Use Getche to read a character from the keyboard and echoing it to
the display.

int getche(void);

In_char = getche();

“UserLib.h”

The Getche function reads a character from the keyboard and the

#include
character is echoed to the display.

The Getche function returns the character read from the keyboard:

A~Z, 0~9, a comma, a blank space and a sign.

38



kbhit
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

Use Kbhit to check if any key is going to be read. As Kbhit will not
wait for the input from keypad, the program can be proceeded till a

signal of interruption was received by pressing the keypad.

int kbhit(void);
while( kbhit() == TM_NONE) do_your thing();
#include “UserLib.h”

The kbhit function checks if any key is going to be read. Scanning
function only accepts the return with good read from the scanner.
The Kbhit function returns what it reads from keypad: TM_NONE -~
™O0-TM1-TM2-TM 3 -TM 4-~-TM 5-TM 6~ TM_7 ~
™ 8-TM _9-TM DOT-TM_CANCEL-TM_ALPHA -TM_FN -~
T™ ESC~TM_PW-TM_ENT-TM_SCAN-TM_UP-TM_DOWN -
TM_LEFT ~ TM_RIGHT -

kbhit GetScan BarType

Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

Use kbhit_GetScan_BarType function to get read barcode type when
TM_SCAN is returned.

int kbhit GetScan BarType(void);

if(kbhit GetScan BarType() == BCODE Code39) do something();
“UserLib.h”

The kbhit_GetScan_BarType function gets the good read barcode

#include

type from the kbhit function.

The kbhit_GetScan_BarType function returns the read barcode type:
BCODE NONE ~ BCODE Code39 - BCODE EANS -

BCODE EANI13 - BCODE UPCA ~ BCODE UPCE -

BCODE Codel28 ~ BCODE 125 - BCODE Codabar -

BCODE Code93 - BCODE ChinaPost °

kbhit GetScan Data

Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

Use kbhit_GetScan_Data function to get read barcode data when
TM_SCAN is returned.

char* kbhit GetScan Data(void);

_printf("%s", kbhit GetScan_Data());

“UserLib.h”

The kbhit_GetScan_Data function gets the good read barcode data
from the kbhit function.

The kbhit_GetScan_Data function returns the read barcode data. In

case of no data received, a NULL will be returned.

#include

kbhit GetScan Datal en

39



Purpose -

Syntax -
Example call :
Includes -

Description :

Returns -
LED IND
Purpose -
Syntax -
Example call :
Includes :

Description :

Uart0 Close

Purpose -

Syntax -
Example call :
Includes -

Description :

Use kbhit_GetScan_Datalen function to get read barcod data length
when TM_SCAN is returned.

int kbhit GetScan Datal.en(void);

nLen = kbhit GetScan Datal.en();

“UserLib.h”

The kbhit_GetScan_Datalen function gets the good read barcode
data length from the kbhit function.

The kbhit_GetScan_Datalen returns the read barcode data lengh.

#include

Use the LED_IND function to control LED status

void LED IND(int nMode, int nTime);

LED IND(2, -1); // Red light is on permanently

#include “UserLib.h”

The LED_IND function provides LED indicator control. Through
nMode to set display mode. And nTime timer controls LED display
time. The timer unit is 0.5 second and -1 means without time

counting :

Display mode Display method

(nTime)
0 Off
1 Orange light is on permanently
2 Red light is on permanently
3 Green light is on permanelty
4 Red and orange light flash alternately
5 Green and orange light flash alternately
6 Green light flashes
7 Red light flashes
8 Red and green light flash alternately
9 Orange light flashes

Use Uart0_Close function to close the serial port (UART) of
collector or simulator

Void Uart0 Close(void);

Uart0 Close();

#include “UserLib.h”

The Uart0_Close function closes the serial port (UART) of collector
of simulator

40



Uart0 Open

Purpose -

Syntax -
Example call :
Includes -

Description :

Uart0 Read

Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

Uart0 Write

Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

Use Uart0_Open function to open the serial port (UART) of collector
or simulator

void Uart0 Open(void);

Uart0_Open();

#include “UserLib.h”

The Uart0_Open function opens the serial port (UART) of collector
or simulator. When the serial port is opened, the communication
protocol will be set according to the agreement. You can start the

UART setting by clicking the setup button on the Simulator display.

Use Uart0_Read to read a specified number of byte data from the
serial port (UART) of collector or simulator

Int Uart0 Read(char *pssBuffer, int nNumberOfBytesToRead);
numread = Uart0) Read (inbuffer, 80); // Read 80 byte data
“UserLib.h”

The Uart0_Read function reads number of NnNumberOfBytesToRead

#include

byte data through the serial port (UART) of collector or simulator.
You have to allocate enough memory to pssBuffer. The data type of
pssBuffer is a pointer to char.

The Uart0_Read function returns the number of data, which was

successfully read.

Use Uart0_Write to write a specified number of byte data to the serial
port (UART) of collector or simulator

int Uart0 Write(char *pssBuffer, int nNumberOfBytesToWrite);
numwrite = Uart0_Write (outbuffer, 80); / Write 80 bytes data
“UserLib.h”

The Uart0_Write function writes number of NNumberOfBytesToWrite

#include

byte data through the serial port (UART) of collector or simulator.
The Uart0_Write function returns the number of data, which was

successfully written.

€ System Calls for Collector

Delay

41



Purpose -

Syntax -
Example call :
Includes -

Description :

Use Delay to suspend program execution for a specified number of
milliseconds.

void Delay(int time);

Delay(10000); // delay 1 second

#include “UserLib.h”

The Delay function provides a program execution suspending
function, which uses time to make suspension. The unit setting value
15 0.0001 second or 0.1 millisecond.

RunRemoteL ink

RunRemoteLinkA

Purpose -
Syntax -
Example call :

Includes :

Description :

UM Initial
UM InitialA
Purpose -

Syntax -

Example call :

Includes :

Description :

Use RunRemoteLink to call the transmission function for user to
upload or download files.

void RunRemoteLink(void);

void RunRemoteLinkA(U16 umFontSelected);

U16 umFontSelected = FONTID 12; // 12x8 Font
RunRemoteLinkA(umFontSelected);

#include “UserLib.h”

The RunRemoteLink function provides the transmission environment
to link with Argolink and make file uploading or downloading.By
“aumFontSelected”,you can choose font type as FONTID & -
FONTID 12 or FONTID 16.

Use UM _InitiaplA to execute user program initialization.

BOOL UM _ Initial(char *pssDLFile);

BOOL UM _InitialA(char *pssDLFile, U16 umFontSelected);

U16 umFontSelected = FONTID 12;

UM _Initial A("D:\\Fonts\\Big5-12.cft", umFontSelected);

// Use 12x12 Chinese font from Big5-12.cft and 12x8 ASCII font.
#include “UserLib.h”

The UM_Initial function is one of the necessary initialization jobs for
user program. It needs to be placed before the program line of
UserProg, but after SIMULATOR_START function. The function will
read the font image that is necessary when displaying font type
according to the font file path specified by pssDLFile,and read the
system font by “umFontSelected” selected.You can choose font type
as FONTID § ~ FONTID 12 and FONTID_16. The font file must be
stored in the D disk on the collector. If there is no font displaying

42



after executing, it should be the error of opening font file. The fonts

can be made by the Font Generator provided by the development kit.

€ System Calls for Simulator
BackupDataFiletoPC

BackupDataFiletoPCA

Purpose -
Syntax -

Example call :

Includes :

Description :

Use BackupDataFiletoPCA to copy data file to any disc in PC.

void BackupDataFiletoPC(char *pTerminalFile;

void BackupDataFiletoPCA(char *pTerminalFile, char *pFileName);
BackupDataFiletoPCA("c:\\data\\test1.dat","f:\\sample\\test1.dat ");
// Copy collector c:\\data\\test1.dat to PC f:\\sample\\test1.dat
#include “UserLib.h”

The BackupDataFiletoPCA function copies the simulator datafile
path specified by pTerminalFile to the pFileName in PC, and you
need to store with the same file name.

CopyFileToTerminal

Purpose -

Syntax -

Example call :

Includes :

Description :

SaveFileInPC

Purpose -
Syntax -
Example call :
Includes -

Description :

Use BackupDataFiletoPC to copy data file to C:\Data directory in
PC.

void CopyFileToTerminal(char *pssPCFileName, char
*pssPDTFileName);
CopyFileToTerminal("..\\Lookup\\MenuLook.dat",
"D:\\Lookup\\MenuLook.dat");

#include “UserLib.h”

The CopyFileToTerminal function copies the PC file path specified
by pssPCFileName pointer to the simulator path specified by
pssPDTFileName pointer.

Use SaveFilelnPC to store the data field in buffer to PC.

void SaveFileInPC(char *pssFileName, char *pssBuffer, int nSize);
SaveFileInPC("c:\\Tempout.prn", pssBuf, nDataSize+8);

#include “UserLib.h”

The SaveFileInPC function stores the data field specified by
pssBuffer pointer to the PC file specified by pssFileName file path
pointer. nSize specifies the length of stored data field.

SIMULATOR END

Purpose -

Use SIMULATOR_END to make the termination of simulator

43



Syntax -
Example call :
Includes -

Description :

develoing.

void SIMULATOR_END(void);

SIMULATOR_END();

#include “UserLib.h”

The SIMULATOR_END function supports the termination jobs for
the simulation environment. It is a necessary function for simulation
environment and must be placed at the last program line of the
UserProg.

SIMULATOR START

Purpose -

Syntax -

Example call :

Includes :

Description :

Use SIMULATOR_START to make the initialization of simulator
developing.

void SIMULATOR_START(char *pssDLFont, char *pssDLFName,
char *pssSys16Font);
SIMULATOR_START("..\\Fonts\\Big5-12.cft",
"D:\\Fonts\\Big5-12.cft", "..\\Fonts\\Sys16.sft");

#include “UserLib.h”

The SIMULATOR_START function supports the initilization jobs for
the simulation environment. It is a necessary finction for simulation
environment and must be placed at the start program line of the
UserProg. The function will download the font file using by
simulator in advance, through pssDLFont path pointer from PC, to
the storage disk path of simulator specified by pssDLFName path
pointer. And also it will download 1Byte 16*12 font file, through
pssSys16Font path pointer from PC, to the storage disk of simulator.

€ System Calls for BIOS Setting
SetUserDefineSetting

Purpose -

Syntax -
Example call :
Includes -

Description :

Use SetUserDefineSetting to set all the parameters as user’s wish, not
necessary to set them up in BIOS.

BOOL SetUserDefineSetting(void);

if(!SetUserDefineSetting()) return FALSE;

“UserLib.h”

The SetUserDefineSetting function may set the defined values of
BIOS setting provided by UserDef.h ,UserLib.h file to substitute with

the setting by manual. The user can change the settings according to

#include

the demands, and then call this function to complete this change.

44



Returns :

If the setting is successful, it returns TRUE, otherwise returns FALSE.

€ Graphics-Text Mode

clrline

Purpose -

Syntax -
Example call :
Includes -

Description :

clrscr

Purpose -

Syntax -
Example call :
Includes -

Description :

Use Clrline to clear the contents of the whole line which the cursor
located, and fill up with the current text window background color.
void clrline(int nLinePos, int nLineAmount);

clrline(0, 1); // clear the first line.

“UserLib.h”

The Clrline function will fill up the whole character space in the line

#include

specified by nLinePos with the current text background color. When
the content in text window is cleared, the cursor will be moved to the

left start position of the specified line.

Use Clrscr to clear the contents in the text window, and fill up with
the current text window background color.

void clrscr(void);

clrser ();

“UserLib.h”

The Clrscr function will fill up the whole character space in the text

#include

window with the current text background color. When the content in
the text window is cleared, the cursor will be moved to the left up

side of the window.

CursorGetYLinePos

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

Use CursorGetYLinePos to return the current cursor line position.
int CursorGetY LinePos(void);

num_line = CursorGetY LinePos();

“UserLib.h”

The CursorGetYLinePos function returns the current cursorline

#include

position. “0” indicates the first line.
The CursorGetYLinePos function returns the current line position.

CursorMoveL ine

Purpose -
Syntax -

Example call :

Includes :

Description :

Use CursorMoveL.ine to move cursor to the specified line position.
void CursorMoveLine(int nXPos, int nYLinePos);

CursorMoveLine (0, 0); //move cursor to the position of X axle 0 and
Y axle 0.
#include “UserLib.h”

The CursorMoveLine function moves current cursor to the specified

45



position. NXPos indicates the dot 0~127 position of specified line on
the X axle. nYLinePos indicates the position on Y axle. There are
different ranges because of the different height of fonts. It will be 0~7
line when the height is 8 dots, 0~4 line when 12 dots, and 0~3 line
when 16 dots.

CursorReverseDisable

Purpose -
Syntax -
Example call :
Includes -

Description :

Use CursorReverseDisable to disable cursor.

void CursorReverseDisable(BOOL bDisReverseTemp);
CursorReverseDisable(FALSE); //force to disable.

#include “UserLib.h”

The CursorReverseDisable function will force to disable cursor
function when bDisReverseTemp is FALSE; and temporarily disable
when is is TRUE. If you execute CursorReverseEnable, then it will

resume to the status before temporarily disabling.

CursorReverseEnable

Purpose -
Syntax -
Example call :
Includes -

Description :

Use CursorReverseEnable to enable cursor.

void CursorReverseEnable(void);

CursorReverseEnable();

#include “UserLib.h”

The CursorReverseEnable function will enable the cursor function.

€ Graphics-Graphics Mode

Disp Clear
Purpose -

Syntax -
Example call :

Includes :

Description :

Use Disp_Clear to clear any size of rectangle display space.

void Disp_Clear(int sIX, int slY, int sIW, int sIH, BOOL bRepaint);
Disp Clear (0, 0, 128, 64, TRUE); //clear a 128*64 rectangle display
space.

#include “UserLib.h”

The Disp_Clear function clears any size of rectangle display space.
The left-top corner of the image space which is going to be cleared is
the window relative coordinate specified by the parameter (sIX, slY).
You need to specify the width sIW, height sIH of this rectangle area,
and the unit is pixel. The display dimension is 128(W)*64(H), total
8,192 pixels. It will need total 1,024 Bytes as buffer.

Disp DrawBox

Purpose -

Use Disp_DrawBox to make a rectangle hollowed box on the display.

46



Syntax -

Example call :

Includes :

Description :

void Disp_DrawBox(int sIL, int sIT, int sIR, int sIB, int slOperate,
BOOL bRepaint);

Disp_DrawBox (0, 0, 127, 63, 1, TRUE); //make a 128*64 rectangle
hollowed black dot box.

#include “UserLib.h”

The Disp_DrawBox function makes any size of rectangle hollowed
box. The left-top corner of the rectangle hollowed box which is going
to be made is the window relative coordinate specified by the
parameter (slL, sIT). The right-bottom corner is the window relative
coordinate specified by the parameter (sIR, sIB). You need to specify
the color of the rectangle hollowed box by slOperate. “0” is specified
as white dot, “1” as black dot, and “2” as reverse color dot of original
one (i.e., white as black or black as white), and the unit is pixel. The
display dimension is 128(W)*64(H), total 8,192 pixels. It will need
total 1,024 Bytes as buffer. The frame width is 1 pixel.

Disp DrawlL.ine

Purpose -
Syntax -

Example call :

Includes :

Description :

Use Disp_DrawLine to make a straight line on the display.

void Disp_DrawLine(int slL, int sIT, int sIR, int sIB, int slOperate,
BOOL bRepaint);

Disp DrawLine (0, 0, 127, 3, 1, TRUE); //makes a 128*3 straight
line.

#include “UserLib.h”

The Disp_DrawLine function makes a straight line. The left-top
corner of the straight line which is going to be made is the window
relative coordinate specified by the parameter (sIL, sIT). The
right-bottom corner is the window relative coordinate specified by
the parameter (sIR, sIB). You need to specify the color of the straight
line by slOperate. “0” is specified as white line, “1” as black line,
and “2” as reverse color line of original one (i.e., white as black or
black as white), and the unit is pixel. The display dimension is
128(W)*64(H), total 8,192 pixels. It will need total 1,024 Bytes as
buffer.

Disp Getlmage

Purpose -

Syntax -

Example call :

Use Disp_Getlmage to get any size of rectangle screen image, and
store into a specified buffer.

int Disp_Getlmage(int sIX, int slY, int sIW, int sIH, char* pssBuffer);
Size buffer = Disp_ Getlmage (0, 0, 128, 64, NULL); //ask for a

47



Includes :

Description :

Returns :

128*64 buffer for a rectangle screen image.

Disp_Getlmage (0, 0, 128, 64, buffer); //get a 128*64 rectangle
screen image.

#include “UserLib.h”

The Disp_Getlmage function gets any size of rectangle screen image
and stores it in a buffer specified by pssBuffer. The left-top corner of
the image which is going to be taken is the window relative
coordinate specified by the parameter (sIX, slY). You need to specify
the width sIW, height sIH of this rectangle area, and the unit is pixel.
The display dimension is 128(W)*64(H), total 8,192 pixels. It will
need total 1,024 Bytes as buffer. If you want to know the pre-stored
image buffer size in advance, you can point the pssBuffer pointer to
NULL first. And specify the image rectangle area. The function will
return the buffer size.

The Disp_Getlmage function returns the buffer size, i.e., the size that

the rectangle screen image needs.
ap

Disp PutBitm
Purpose -
Syntax -

Example call :

Includes :

Description :

Use Disp_PutBitmap to put a bitmap drawing on the display. °

int Disp PutBitmap(int sIX, int slY, char* pssBmpBuf, int nBufSize,
BOOL bRepaint);

Disp_PutBitmap (0, 0, buffer, buf size, TRUE); //display a bitmap
rectangle image at coordinate of (0,0) and update the screen
immediately.

#include “UserLib.h”

The Disp_PutBitmap function makes a bitmap image in the data
buffer area which was pointed by pssBmpBuf pointer. The data format
in the buffer should be bitmap graphic format. The left-top corner of
the image which is going to be made is the window relative
coordinate specified by the parameter (sIX, slY). You need to specify
the buffer size by using nBufSize, and the unit is pixel. The display
dimension is 128(W)*64(H), total 8,192 pixels. It will need total
1,024 Bytes as buffer.

Disp Putlmage

Purpose -

Syntax -

Example call :

Use Disp_Putlmage to display previous stored rectangle screen
image stored by Disp_Getlmage in the buffer.

void Disp Putlmage(int s1X, int slY, int sIW, int sIH, char* pssImage,
BOOL bRepaint);

Disp_ Putlmage(0, 0, 128, 64, buffer, TRUE); /Display a 128*64

48



rectangle screen image and update the screen immediately.
Includes :  #include “UserLib.h”

Description -  The Disp_Putlmage function re-makes the rectangle screen image
previously stored in the buffer by Disp_Getlmage. The address of the
buffer area must be specified by parameter pssimage. The left-top
corner of the image which is going to be re-made is the window
relative coordinate specified by the parameter (sIX, slY). You need to
specify the width sIW, height sIH of this rectangle area, and the unit
is pixel. The display dimension is 128(W)*64(H), total 8,192 pixels.
It will need total 1,024 Bytes as buffer.

Disp Reverse
Purpose :  Use Disp_Reverse to reverse the rectangle screen image.
Syntax :  void Disp_Reverse(int sIX, int slY, int sIW, int sIH, BOOL bRepaint);
Example call :  Disp Reverse(0, 0, 128, 64, TRUE); //reversely display a 128*64
rectangle screen image and update the screen immediately.
Includes :  #include “UserLib.h”

Description - The Disp_Reverse function re-makes the previously rectangle screen

image reversely. The left-top corner of the image which is going to be
re-made reversely is the window relative coordinate specified by the
parameter (s1X, sIY). You need to specify the width sIW, height sIH
of this rectangle area, and the unit is pixel. The display dimension is
128(W)*64(H), total 8,192 pixels. It will need total 1,024 Bytes as
buffer.
Disp Repaint
Purpose :  Use Disp_Repaint to repaint the rectangle screen image.
Syntax - void Disp_Repaint(int sIL, int sIT, int sIR, int sIB, BOOL bRepaint);
Example call :  Disp Repaint (0, 0, 127, 63, TRUE); //repaint a (0,0) - (127,63)
rectangle screen area and update the screen immediately.
Includes :  #include “UserLib.h”

Description - The Disp_Repaint function repaints the rectangle screen image. The

image, which is going to be updated, was determined by bRepaint.
The left-top corner of the repainted image is the window relative
coordinate specified by the parameter (slL, sIT). You need to specify
the right-bottom corner of the rectangle area (SIR, SIT), and the unit
is pixel. The display dimension is 128(W)*64(H), total 8,192 pixels.

€ Menu Management

49



Menu AddSubltem

Purpose -
Syntax :
Example call :

Includes :

Description :

Notes

Use Menu_AddSubltem to increase the items and functions in the
menu.

void Menu_AddSubltem(int nSubID, int nSubDatal.en, const char*
pssSubData, int nGotolD, int nShortcut);

Menu_AddSubltem(0, strlen(buffer), buffer, 0, 1);

#include “UserLib.h”

The Menu_AddSubltem function increases the sub-item of the menu
elements. nSubID sets the rank order. nGotolD sets the ID code
returned after selecting the sub-item. nShortcut sets the hot key value.
pssSubData sets display contents. nSubDatalen sets the length of
display contents.

Please refer to the example call to know the using method.

Menu AddSubltem H

Purpose -
Syntax -
Example call :

Includes :

Description :

Notes

Menu Create

Purpose -

Syntax -

Example call :

Includes :

Description :

Use Menu_AddSubltem_H to increase the items and functions in the
menu and hiding setup.

void Menu_AddSubltem H(int nSubID, int nSubDatal.en, const
char* pssSubData, int nGotolD, int nShortcut, int Hide);

Menu_ AddSubltem H(O, strlen(bufter), buffer, 0, 1, TRUE);
#include “UserLib.h”

The Menu_AddSubltem function increases the sub-item of the menu
elements. nSublD sets the rank order. nGotolD sets the ID code
returned after selecting the sub-item. nShortcut sets the hot key value.
pssSubData sets display contents. nSubDatalen sets the length of
display contents. Hide sets hide (TRUE for hide and FALSE for
display).

Please refer to the example call to know the using method.

Use Menu_Create to provide the function of initialization for a
cycling menu.

BOOL Menu_Create(int nTitleDatalen, const char* pssTitleData,
BOOL bTitleReverse, int nAmountSubltems);
Menu_Create(strlen(buffer), buffer, FALSE, 3); //open a cycling
menu and contents 3 sub-items.

#include “UserLib.h”

The Menu_Create function provides a cycling menu. The number of
sub-item was determined by nAmountSubltems and pssTitleData

50



Returns :

Notes

determines whether it will display the header title string or not.
nTitleDatalen sets the length of title string. bTitleReverse determines
to be color-reversed or not. If you need to execute the cycling menu,
you must to call Menu_Run function first, and then the menu can be
used.

If creation is successful, it will return TRUE, otherwise returns
FALSE.

Please refer to the example call to know the using method.

Menu Destory

Purpose -
Syntax -
Example call :
Includes -

Description :
Notes
Menu Run

Purpose -

Syntax -

Example call :

Includes :

Description :

Returns :

Notes

Use Menu_Destory to remove the function of cycling menu.
void Menu_Destory(void);

Menu_Destory();

“UserLib.h”

The Menu_Destory function removes the cycling menu created by

#include

Menu_Create on the screen.

Please refer to the example call to know the using method.

Use Menu_Run to enable the cycling menu function initialized by
Menu_Create.

int Menu_Run(int nSelectID);

Menu_Run(1); //Select the second item as the default reverse-color
bar selection.

“UserLib.h”

The Menu_Run function enables the cycling menu initialized by
Menu_Create. Use nSelectID to set the default reverse-color bar

#include

selection of the sub-item. Exection should be done after
Menu_Create and Menu_AddSubltem function.

The Menu_Run function returns the NnGotolD value of the sub-item
after selection.

Please refer to the example call to know the using method.

Menu SetRent

Purpose -
Syntax -

Example call :

Includes :

Description :

Use Menu_Setrent to set the cycling menu function’s scroll range.

void Menu_SetRent(U16 umTopLinePos, U16 umButtomLinePos);

Menu_SetRent(1,3);// Menu scroll range is the second linetothe
fourth line.

“UserLib.h”

Use Menu_SetRent function can set the scroll range after use

Menu_Create function.

#include

51



Returns :
Notes

No returns.

52



7. DBMS Library

Function
DBMS
Ini_Search C
Ini_Search D
Close_Search
SearchField
SearchField GR

SearchField GF

SeekRecord
GetRecordNum
DeleteRecord
DeletelLastRecord
AppendRecord
WriteField
WriteRecord
ReadField
ReadRecord

Table 7-1 DBMS Functions list
Description

Initialize the file search function in disk C.

Initialize the file search function in disk D.

Close the file search function in Disk C and D.
Search the designated field.

Search the designated field; After searching success,
acquiring the record which includes this field.
Search the designated field; After searching success,
acquiring the appointed field in including this field’s
record.

Move the index of searching to the appointed record.
Obtain the figure of all records in the file.

Delete the appointed record in the file.

Delete the last record in the file.

Increase one record on the file end.

Revise the data of appoint field in appointed field record.

Revise the data of the appointed record.

Read the data of appointed field in the appointed record.

Read data of the appointed record.

€ DBMS Functions Description

Ini_Search C
Purpose -

Use “Ini_Search C” can initiate the file search function in disk C.
Syntax : int Ini_Search C(_TFILE* filehd, DBMS* F_Search, unsigned

char *pusFielddlt, int record_type, int record length, int

total field no, int total record no);

Example call :

Example 1: Variable field length

_DBMS fsearsh;

_TFILE filepoint;

filepoint = fopen(‘“‘c:\\data\\data.txt”,”’a+");
Ini_Search C(filepoint,&fsearch,’,’,1,0,5,0);
Example 2: Regular field length

53



_DBMS fsearsh;
_TFILE filepoint;

unsigned char field size[5]={6,5,4,5,6};
filepoint = fopen(‘“‘c:\\data\\data.txt”,”’a+");
Ini_Search C(filepoint,&fsearch, field size,0,26,5,0);

Includes :  #include “DBMS.h”

Description - This function can initialize a work of searching file. After inserting

every argument, you can use _ DBMS* F _ Search to search files.

Several introduces the argument as follows:

argument
_TFILE* filehd
_DBMS* F_Search

unsigned char
*pusFielddlt

int record _type

int record length

54

description
An opened file index.
One of DBMS start address has
already declared. Originally after the
beginning success this argument was
used for written into various kinds of
search.
This argument has two kinds of
meanings.
When record _ Type is 0, search for
regular length. This function needs to
insert the unsigned char array; the array
represents the length of every field.
When record _ Type isl, search for
variable length, this function need to
insert one character to represent
separate symbol.
When record _ Type is 0, search for
regular length. It has no separate
symbols among field and field.
When record _ Type is 1, search for
variable length. It needs a separate
symbol among field and field.
This argument is each record’s length.
When record _ Type is 0, need to insert
this value, not including the symbol of
line feed.
When record _ Type is 1, this field can

insert any value.



Returns :

Ini Search D

Purpose -
Syntax -

Example call :

Includes :

Description :

int total field no This argument is the field’s quantity of
each record.

int total record no Total amount of records in the file. If
does not know the total amount, you
can insert - 1, that will calculate
automatically by the system.

0: Initialize defeat.

1: Initialize success.

Use “Ini_Search D can initiate the file search function in disk D.
int Ini_Search D(char* filehd D, unsigned int filesize D,
_DBMS* F_Search, unsigned char *pusFielddlt, int record type,
int record length, int total field no, int total record no);
Example 1: Variable field length
_DBMS fsearsh;
char *filepoint;
unsigned file size;
filepoint = fopenLookup (“d:\\Lookup\\data.txt”,&file_size);
Ini_Search D(filepoint, file size, &fsearch,’,’,1,0,5,0);
Example 2: Regular field length
_DBMS fsearsh;
char *filepoint;
unsigned file size;
unsigned char field size[5]={6,5,4,5,6};
filepoint = fopenLookup (“d:\\Lookup\\data.txt”,&file_size);
Ini_Search D(filepoint, file size, &fsearch, field size,0,26,5,0);
#include “DBMS.h ”
This function can initialize a work of searching file. After inserting
every argument, you can use _ DBMS* F _ Search to search files.
Several describe the argument as follows:

argument description
char* filehd D An opened file index of D.

unsigned int filesize D Size of this file.

55



Returns :

Close Search

Purpose -

_DBMS* F_Search

unsigned char
*pusFielddlt

int record _type

int record length

int total field no

int total record no

0: Initialize and defeat.

1: Initialize success.

One of DBMS start address has
already declared. Originally after the
beginning success this argument was
used for written into various kinds of
search.

This argument has two kinds of
meanings.

When record _ Type is 0, search for
regular length. This function needs to
insert the unsigned char array; the array
represents the length of every field.
When record _ Type isl, search for
variable length, this function need to
insert one character to represent
separate symbol.

When record _ Type is 0, search for
regular length. It has no separate
symbols among field and field.

When record _ Type is 1, search for
variable length. It needs a separate
symbol among field and field.

This argument is each record’s length.
When record _ Type is 0, need to insert
this value, not including the symbol of
line feed.

When record _ Type is 1, this field can
insert any value.

This argument is the field’s quantity of
each record.

Total amount of records in the file. If
does not know the total amount, you
can insert - 1, that will calculate

automatically by the system.

Use “Close _ Search” can close the file search function in Disk C



and D.
Syntax - int Close Search( DBMS* F_Search);
Example call :  Close Search(&F Search);
Includes ©  #include “DBMS.h”
Description -  When want to finish the file searching state, you can use this
function.
Returns :  0: Close defeat.
1: Close success.
SearchField
Purpose ©  SearchField can search the appointed field that begin form the
appointed record and compare with importing string. If agreeing,
pass back to the first record.
Syntax © int SearchField( DBMS* F_Search, char* field, int
search_fieldno, int recordno, int flag);
Example call :  char str[8]="abcdefg”;
int Record Num;
Record Num =SearchField(&fsearch, str,0,0,FORWARD);
Includes ©  #include “DBMS.h”

Description - Several describe the argument as follows:

argument description
_DBMS* F_Search The file’s searching structure that has
been initialized.
char* field String data wanted to match.
int search_fieldno Field wanted to search.
int recordno Begin to search from which data.
int flag FORWARD => Search form forward to
backward

BACKWARD => Search form
backward to forward

As success of searching, the file index
will stay in successful record front.
When search defeat, the file index will
not be moved (not support
BACKWARD at present).

Returns - -1: Search defeat.

Other value: Match the record position of data
SearchField GR
Purpose :  SearchField GR can search the appointed field that begin form the

57



Syntax -

Example call :

Includes :

Description :

Returns

appointed record and compare with importing string. If agreeing, it
will copy the record which included the field to buffer.

int SearchField GR(_ DBMS* F_Search, char* field, int
search_fieldno, int recordno, char* R_Buffer, int flag);

char str[8]="abcdefg”,str buffer[60];

SearchField GR(&fsearch, str,0,0, str buffer, FORWARD);
#include “DBMS.h”

This function can search and contrast the data of appointed field.
After success, reading the record which includes this field.

Several describe the argument as follows:

argument description
_DBMS* F_Search The file’s searching structure that has
been initialized.
char* field String data wanted to match.
int search_fieldno Field wanted to search.
int recordno Begin to search from which data.
char®* R_Buffer After contrast success, it will write

record which included this field into
buffer.
int flag FORWARD => Search form forward to
backward
BACKWARD => Search form
backward to forward
As success of searching, the file index
will stay in successful record front.
When search defeat, the file index will
not be moved (not support
BACKWARD at present).
When “R _ Buffer = NULL”, pass back — 1: Search defeat; Pass
other value back: That is the size of space for buffer.
When “R _ Buffer # NULL”, pass back — 1: Search defeat; Pass
other value back: That is the record position which conform to

contrast data.

SearchField GF

Purpose -

Syntax -

Search the designated field. After success, acquiring the appointed
field in including the field’s record.
int SearchField GF(_ DBMS* F_Search, char* field, int

58



Example call :

Includes :

Description :

Returns

SeekRecord

Purpose -
Syntax -

Example call :

search_fieldno, int recordno, int get field no, char* F_Buffer, int
flag);

char str[8]="abcdefg”,str buffer[60];

SearchField GF(&fsearch, str,0,0,1,str buffer, FORWARD);
#include “DBMS.h”

Search the correctly appointed field. After search success,
acquiring another appointed field which including record of this
field.

Several describe the argument as follows:

argument description
_DBMS* F Search The file’s searching structure that has
been initialized.
char* field String data wanted to match.
int search_fieldno Field wanted to search.
int recordno Begin to search from which data.
int get_field no After contrasting success, acquiring the

data of appointed field in this record.
char* R_Buffer After contrast success, it will write
record which included this field into
buffer.
int flag FORWARD => Search form forward to
backward
BACKWARD => Search form
backward to forward
As success of searching, the file index
will stay in successful record front.
When search defeat, the file index will
not be moved (not support
BACKWARD at present).
When “R _ Buffer = NULL”, pass back — 1: Search defeat; Pass
other value back: That is the size of space for buffer.
When “R _ Buffer # NULL”, pass back — 1: Search defeat; Pass
other value back: That is the record position which conform to

contrast data.

Move the searching index to the appointed record.
long SeekRecord( DBMS* F_Search,int recordno);
SeekRecord(&fsearch,10);//move file index to eleventh record °

59



Includes :

#include “DBMS.h”

Description - Use this function can move the search index to appointed record.

The number of first record is 0. The number of second record is 1.

Returns :  -1: The index move is defeated.
Other value: the present address of searching index

GetRecordNum

Purpose :  Use this function can read the total amount of records storing in

the file at present. .
Syntax -  int GetRecordNum( DBMS* F_Search);

Example call :

Includes :

Description :

Returns :

DeleteRecord

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

int record num;

record num= GetRecordNum(&fsearch);

#include “DBMS.h”

GetRecordNum can pass back the amount of record storing in the
file at present.

Amount of record that stores in the file

Use this function can delete the appointed record in the file.

int DeleteRecord( DBMS* F_Search,int recordnum);
DeleteRecord(&fsearch,2);//delete the third data of this file °
#include “DBMS.h”

“DeleteRecord” can delete the appointed record, and change the
size of the file.

As success of deleting, file index will stay in the deleting record
front. As deleting defeat, file index will not move.

0: Delete defeat. 1: Delete success.

Deletel_astRecord

Purpose -
Syntax -

Example call :

Use this function can delete the last record in the file.
int DeleteLastRecord( DBMS* F_Search);
DeleteLastRecord(&fsearch);

Includes :  #include “DBMS.h”
Description :  “DeleteLastRecord” can delete the last record in the file, and

change the size of the file.
As success of deleting, file index will stay in deleting record front.
As deleting defeat, file index will not move.

Returns - 0: Delete defeat. 1: Delete success.

AppendRecord
Purpose ©  Use this function can increase a new record on the file end.
Syntax -  int AppendRecord( DBMS* F_Search,char* record);

60



Example call :

Includes :

Description :

Returns :

WriteField
Purpose -

Syntax -

Example call :

Includes :

Description :

Returns :

WriteRecord
Purpose -
Syntax -

Example call :

Includes :

Description :

Returns :

char str_record[25]="A1357924680,PT-10,3500";
AppendRecord(&fsearch, str record);

#include “DBMS.h”

“AppendRecord” can increase a new record on the file end, the
data of record is introduced by char * record.

As increasing success, file index will be moved to the front of
increasing record.

-1: Write into defeat.

Other value: the quantity of the data.

Use this function can revise the designated record in the existed
file.

int WriteField( DBMS* F_Search, int recordno, int fieldno, char*
field);

Char str_field[10]="123456789”;

WriteField(&fsearch,0,1, str_field);// Revise the second field of the
first data to “str_field”.

As revising success, file index will be moved to the front of the
record included revising field.

#include “DBMS.h”

Using WriteField function can copy the field of appointed record.
If the file in disc D that you want to write, it will not allow to
write.

-1: Write into defeat.

Other value: Write into the amount of data.

Using this function can copy the existed record.

int WriteRecord( DBMS* F_Search, int recordno, char* record);
char str_record[20]="A123456,PT-10,2330;
WriteRecord(&fsearch,0, str_record);// Revise the first record to
char str_record °

#include “DBMS.h”

Use WriteRecord function can copy the existed record, but unable
to increase a new record.

As revising success, file index will be moved to revise the front of
revising record. If the file in disc D that you want to write, it will
not allow to write.

-1: Write into defeat.

61



ReadField
Purpose -

Syntax -

Example call :

Includes :

Description :

Returns :

ReadRecord

Purpose -
Syntax -

Example call :

Includes :

Description :

Returns :

Other value: Write into the amount of data.

Use this function to read the data of appointed field in the
appointed record.

int ReadField( DBMS* F_Search, int recordno, int fieldno, char*
buffer);

char str_buffer[30];

ReadField(&search,5,0,str_buffer);//Reading the data of first field
in the sixth record, and store to “str_buffer”.

#include “DBMS.h”

int recordno : Read of record position.

int fieldno : Read of field position.

char* buffer : Read the storing space of field °

When char * buffer = NULL, functions will pass the data size
back. Read defeat: Pass back - 1.

When char * buffer # NULL. Read succeed: Pass 1 back; Read
defeat: Pass back - 1.

Use this function to read the data of appointed record.

int ReadRecord( DBMS* F_Search, int recordno, char* buffer);
char str_buffer[30];

ReadRecord (&search,5,str buffer);//Reading the data of sixth
record, and store to “str_buffer”.

#include “DBMS.h”

int recordno : Read of record position °

char* buffer : Read the storing space of field °

When char * buffer = NULL, functions will pass materials size
back. Read defeat. Pass back - 1.

When char * buffer does not equal NULL. Read succeed. Passing
1 back; Read defeat. Pass back - 1.

62



8. CL Library

Function
Reader
Decode
HaltScannerl
InitScannerl

Buzzer

beeper_status
off beeper

on_beeper
SetBuzzerVol

Calender
DayOfWeek
get_time
set_time

File Manipulation

__access

append

appendin

chsize

close

delete top

delete topln

eof
filelength
filelist
Iseek

open

read

read_error_code

readln

Table 8-1 CL Functions list
Description

Perform barcode decoding.
Stop the scanner port from operating.

Initialize respective scanner port.

To see whether a beeper sequence is under going or not.
Terminate beeper sequence.
Assign a beeper sequence to instruct beeper action.

Set the buzzer volume.

Get the day of the week information.
Get current date and time.

Set new date and time to the calendar chip.

Check for file existence.

Write a specified number of bytes to bottom (end-of-file
position) of a DAT file.

Write a specified number of bytes to bottom (end-of-file
position) of a DAT file.

Extends or truncates a DAT file.

Close a DAT file.

Remove a specified number of bytes from top
beginning-of-file position) of a DAT file.

Remove a null terminated character string from the top
(beginning-of-file position) of a DAT file.

Check if file pointer of a DAT file reaches end of file.
Get file length information of a DAT file.

Get file directory information.

Move file pointer of a DAT file to a new position.

Open a DAT file and get the file handle of the file for
further processing.

Read a specified number of bytes from a DAT file.

Get the value of the global variable fErrorCode.

Read a line terminated by a null character “\0” from a

63



remove

rename
tell
write

writeln

DiskC format
DiskD_format
DiskC _totalsize
DiskD _totalsize
DiskC_usedsize
DiskD_usedsize
DiskC_freesize
DiskD_freesize
LED

set_led
Keypad
clr_kb
dis_alpha

en_alpha
get alpha enable state

get alpha lock state

getchar

GetKeyClick
_kbhit
set_alpha_lock
SetKeyClick
FNKey_ GetState
FNKey SetUserDef
LCD

clr_eol

clr rect

clr scr

DecContrast

DAT file.

Delete file.

Change file name of an existing file.

Get file pointer position of a DAT file.

Write a specified number of bytes to a DAT file.
Write a line terminated by a null character (\0) to a DAT
file. The null character is also written to the file. After
writing in, file position will update.

Format disk C.

Format disk D.

Checking the total space in disk C.

Checking the total space in disk D.

Checking the used space in disk C.

Checking the used space in disk D.

Checking the free space in disk C.

Checking the free space in disk D.

To set the LED indicators

To clear the keyboard buffer.

Disable alphabet key stroke processing.

Enable alphabet key stroke processing.

Get the status of the alphabet key stroke processing.
Get alpha lock state information.

Get one key stroke from the keyboard buffer.

Get current key click status

Check whether the keyboard buffer is empty.

Set alpha lock state.

To enable / disable the key click sound.

To check the FN-Key setting that is custom or default.
To set a custom setting for FN-Key.

Clear from where the cursor is to the end of the line. The
cursor position is not affected after the operation.

Clear a rectangular area on the LCD display. The cursor
position is not affected after the operation.

Clear LCD display.

Decrease the LCD contrast

64



fill rect
GetCursor
GetFont

get_image

gotoxy
IncContrast

Icd backlit

putchar

puts
SetContrast

SetCursor
SetFont
show_image
wherex
wherexy
wherey
showlogo_std
show_bitmap

Communication Ports

clear com
close com
com cts

com_eot

com_overrun
com_rts

nwrite com

open_com
read com

SetCommType

write com
Keyboard Wedge

WedgeOpen
WedgeClose

WedgeReady
SendData

Fill a rectangular area on the LCD display.

Get current cursor status.

Get current font information.

Read the bitmap pattern of a rectangular area on the
LCD display.

Move cursor to new position.

Increase the LCD contrast

Set LCD backlight

Display a character on the LCD display.

Display a string on the LCD display.

To set contrast level for the LCD

Turn on or off the cursor of the LCD display.

Select the font to be used afterwards.

Put a rectangular bitmap to the LCD display.

Get x-coordinate of the cursor location.

Get x-coordinate and y-coordinate of the cursor location
Get y-coordinate of the cursor location.

Show the default LOGO.

Put a rectangular bitmap to the LCD display.

Clear receive buffer

To close specified communication port

Get CTS level

To see if any COM port transmission in process (End Of
Transmission)

See if overrun error occurred

Set RTS signal

Send a specific number of characters out through RS232
port

Initialize and enable specified RS232 port

Read 1 byte from the RS232 receive buffer

Set the communication type of the port specified.

Send a string out through RS232 port

Open the keyboard wedge transmission.
Close the keyboard wedge transmission.
Check if the keyboard cable is connected or not.

Send a string to keyboard interface.

65



System

SysSuspend
SetPowerOnState

SetAutoOffTimer
GetKernel Ver
Power
get_vmain

Other

prc_menu

€ Reader

Decode
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

HaltScannerl
Purpose -
Syntax -
Example call :
Includes :

Description :

Shut down the system.
Set power on state.
Set auto off timer.

Get KERNEL version.

Get voltage level of the main power supply.

Create a menu-driven interface.

Perform barcode decoding.

int Decode(void);

while(1){if(Decode( )) break;}

#include “LIB_CL.h ”

Once the scanner port is initialized (by use of InitScannerl
function), call this Decode function to perform barcode decoding.
This function should be called constantly in user's program loops
when barcode decoding is required. If the barcode decoding is not
required for a long period of time, it is

recommended that the scanner port should be stopped by use of the
HaltScannerl function. If the Decode function decodes
successfully, the decoded data will be placed in the string variable
CodeBuf with a string terminating character appended.

And the integer variable CodeLen, and the character variable
CodeType will reflect the length and the code type of the decoded
data respectively.

0 : Fail -

Other value : Barcode length

Stop the scanner port from operating.
void HaltScanner1(void);
HaltScannerl( );

#include “LIB_CL.h ”

Use HaltScannerl1 function to stop scanner port from operating. To

66



restart a halted scanner port, the initialization function,
InitScannerl, must be called. It is recommended that the scanner
port should be stopped if the barcode decoding is not required for a
long period of time.
Returns '  none
InitScannerl
Purpose : Initialize respective scanner port.

Syntax :  void InitScannerl(void);
Example call :  InitScannerl( );
Includes ©  InitScannerl();
while(1){if(Decode( )) break;}
Description - Use InitScanner] function to initialize scanner port. The scanner

port won't work unless it is initialized.

Byte Bit Description
; 1 : Enable Code 39
0 : Disable Code 39
6 Reserved
Reserved
4 Reserved
0 3 1 : Enable Interleave 25
0 : Disable Interleave 25
2 Reserved
{ 1 : Enable Codabar
0 : Disable Codabar
1 : Enable Code 93
0 0 : Disable Code 93
{ ; 1 : Enable Code 128
0 : Disable Code 128
p 1 : Enable UPCE no Addon
0 : Disable UPCE no Addon
1 : Enable UPCE Addon 2
> 0 : Disable UPCE Addon 2
4 1 : Enable UPCE Addon 5
0 : Disable UPCE Addon 5
1 : Enable EAN 8 no Addon
3 0 : Disable EAN 8 no Addon

67



5 1 : Enable EAN 8 Addon 2
0 : Disable EAN 8 Addon 2
) 1 : Enable EAN 8 Addon 5
0 : Disable EAN 8 Addon 5
1 : Enable EAN 13 no Addon
0 0 : Disable EAN 13 no Addon
; 1 : Enable EAN 13 Addon 2
0 : Disable EAN 13 Addon 2
6 1 : Enable EAN 13 Addon 5
0 : Disable EAN 13 Addon 5
5-0 Reserved
7-0 Reserved
7-0 Reserved
1 : Transmitting Code 39 Start/Stop Character
7 0 : No Transmitting Code 39 Start/Stop
Character
6 1 : Verifying Code 39 Check Character
0 : No Verifying Code 39 Check Character
s 1 : Transmitting Code 39 Check Character
0 : No Transmitting Code 39 Check Character
4 1 : Full ASCII Code 39
0 : Standard Code 39
3-2 Reserved
) 1 : Verifying Interleave 25 Check Digit
0 : No Verifying Interleave 25 Check Digit
0 1 : Transmitting Interleave 25 Check Digit
0 : No Transmitting Interleave 25 Check Digit
7-0 Reserved
7-6 Reserved
Codabar Start/Stop Character
00 : abcd/abed
5-4 01 : abcd/tn*e
10 : ABCD/ABCD
11 : ABCD/TN*E
1 :Transmitting Codabar Start/Stop Character
3 0 :No Transmitting Codabar Start/Stop
Character
2-0 Reserved

68




Returns :

€ Buzzer

beeper status

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns

7-0 Reserved
7-0 Reserved
1 : Enable ISBN Conversion
’ 0 : No Conversion
1 : Enable ISSN Conversion
6 0 : No Conversion
5 1 : Transmitting UPCE Check Digit
0 : No Transmitting UPCE Check Digit
10 4 1 : Transmitting UPCA Check Digit
0 : No Transmitting UPCA Check Digit
3 1 : Transmitting EAN8 Check Digit
0 : No Transmitting EAN8 Check Digit
5 1 : Transmitting EAN13 Check Digit
0 : No Transmitting EAN13 Check Digit
1-0 Reserved
7-4 Reserved
00 : No Read Redundancy for Scanner Port 1
01 : One Read Redundancy for Scanner Port
1
11 3-2 10 : Two Read Redundancy for Scanner Port
1
11 :Three Read Redundancy for Scanner Port
1
1-0 Reserved
12-22 7-0 Reserved
none

To see whether a beeper sequence is under going or not.

int beeper_status(void);

while(beeper_status( ));
#include “LIB_CL.h ”

The beeper_status function checks if there is a beeper sequence in

progress.

1 if beeper sequence still in progress, 0 otherwise

69




off beeper
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns -
on_beeper

Purpose -

Syntax -

Example call :

Includes :

Description :

Returns :

SetBuzzer\ol

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

Terminate beeper sequence.

void off beeper(void);

off beeper( );

#include “LIB_CL.h ”

The off beeper function terminates beeper sequence immediately
if there is a beeper sequence in progress.

nonec

Assign a beeper sequence to instruct beeper action.
void on_beeper(int *sequence);

int beep _twice[50] = {30,10,0,10,30,10,0,0};
on_beeper(beep_twice);

#include “LIB_CL.h ”

A beep frequency is an integer used to specify the frequency (tone)
when the beeper activates. The actual frequency that the beeper
activates is not the value specified to the beep frequency. It is
calculated by the following formula.

Beep Frequency = 76000 / Actual Frequency Desired

For instance, to get a frequency of 2000Hz, the value of beep
frequency should be 38. If no sound is desired (pause), the beep
frequency should beset to 0. A beep with frequency 0 does not
terminate the beeper sequence. Suitable frequency for the beeper
ranges from 1 to 2700Hz, where peak

at 2000Hz.

The on_beeper function has no return value.

Set the buzzer volume.

void SetBuzzerVol(int sIVol);
SetBuzzerVol(0);//Buzzer close.
#include “LIB_CL.h ”

The SetBuzzerVol function can set the buzzer volume.

sIVol Buzzer vloume
0 close
1 Low
2 Medium
3 High

None.

70



€ Calender

DayOfWeek

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

get time
Purpose -

Syntax -

Example call :

Includes :

Description :

Returns

set time

Get the day of the week information.

int DayOfWeek(void);

day=DayOfWeek( );

#include “LIB_CL.h ”

The DayOfWeek function returns the day of week information
based on current date.

The DayOfWeek function returns an integer indicating the day of

week information. A value of 1 to 6 represents Monday to

Saturday accordingly. And a value of 7 indicates Sunday.

Get current date and time

int get_time(char *cur time);

char system_time[16];

get time(system_time);

#include “LIB_CL.h ”
The get time function reads current date and time from the
calendar chip and copies them to a character array specified in
the argument cur_time. The character array cur time allocated
must have a minimum of 15 bytes to accommodate the date,
time, and the string terminator. The format of the system date

and time is listed below.

"YYYYMMDDhhmmss"
YYYY year, 4 digits
MM month, 2 digits
DD day, 2 digits
hh hour, 2 digits
mm minute, 2 digits
SS second, 2 digits

Normally the get time function always returns an integer value of
0. If the calendar chip malfunctions, the get time function will

then return 1 to indicate error.

71



Purpose -
Syntax -

Example call :

Includes :

Description :

Returns :

Set new date and time to the calendar chip.

int set_time(char *new_time);

set_time(“20030401223035”);

#include “LIB_CL.h ”
The set_time function set a new system date and time specified
in the argument new_time to the calendar chip. The character

string new_time must have the following format,

"YYYYMMDDhhmmss"
YYYY year, 4 digits
MM month, 2 digits, 1-12
DD day, 2 digits, 1-31
hh hour, 2 digits, 0-23
mm minute, 2 digits, 0-59
SsS second, 2 digits, 0-59

Ps. When it execute in simulator, the time will not change.
Normally the set time function always returns an integer value of
1. If the calendar chip malfunctions, the set time function will then
return 0 to 0 error. Also, if the format is illegal (e.g. set hour to

25), the operation is simply denied and the time is not changed.

& File Manipulation

ACCesS
Purpose -
Syntax -
Example call :
Includes -
Description :

Returns :

fErrorCode :
append

Check for file existence.

int __ access(char *filename);

if(__access(“C:\\data\\store.dat”) puts(‘“store.dat exist!!”);
#include “LIB_CL.h ”

Check if the file specified by filename.

If the file specified by filename exist, access returns an integer
value of 1, 0 otherwise. In case of error, access will return an
integer value of -1 and an error code is set to the global variable
fErrorCode to indicate the error condition encountered. Possible
error codes and theirinterpretation are listed below.

1: filename is a NULL string.

72



Purpose -

Syntax -

Example call :

Includes :

Description :

Returns :

fErrorCode :

appendin
Purpose -

Syntax -

Example call :

Includes :

Description :

Returns :

Write a specified number of bytes to bottom (end-of-file position)
of a DAT file.

int append(int fd, char *buffer, int count);
append(fd,”ABCDE”,5);

#include “LIB_CL.h ”

The append function writes the number of bytes specified in the
argument count from the character array buffer to the bottom of a
DAT file whose file handle is fd. Writing of data starts at the
end-of-file position of the file, and the file pointer position is
unaffected by the operation. The append function will
automatically extend the file size of the file to hold the data
written.

The append function returns the number of bytes actually written
to the file. In case of error, append returns an integer value of -1
and an error code is set to the global variable fErrorCode to
indicate the error condition encountered. Possible error codes and
their interpretation are listed below.

2 File specified by fd does not exist.

8 File not opened

9 The value of count is negative.

10 No more free file space for file extension.

Write a null terminated character string to the bottom

(end-of-file position) of a DAT file.

int appendIn(int fd, char *buffer);

appendIn(fd, data buffer);

#include “LIB_CL.h ”

The appendIn function writes a null terminated character string
from the character array buffer to a DAT file whose file handle is
fd. Characters are written to the file until a null character (\0) is
encountered. The null character is also written to the file. Writing
of data starts at the end-of-file position. The file pointer position
is unaffected by the operation. The appendln function will
automatically extend the file size of the file to hold the data
written.

The appendIn function returns the number of bytes actually
written to the file (includes the null character). In case of error,

appendln returns an integer value of -1 and an error code is set to

73



fErrorCode :

chsize

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

fErrorCode :

Syntax -
Example call :
Includes -

Description :

Returns :

fErrorCode :

the global variable fErrorCode to indicate the error condition
encountered. Possible error codes and their interpretation

are listed below.

2:File specified by fd does not exist.

8:File not opened

10:No more free file space for file extension.

11:Can not find string treminator in buf.

Extends or truncates a DAT file.

int chsize(int fd, long new_size);

if (chsize(fd, 0)) puts(“file truncated!\n”);

#include “LIB_CL.h ”

The chsize function truncates or extends the file specified by the
argument fd to match the new file length in bytes given in the
argument new_size. If the file is truncated, all data beyond the
new file size will be lost. If the file is extended, no initial value is
filled to the newly extended area.

If chsize successfully changes the file size of the specified DAT
file, it returns an integer value of 1. In case of error, chsize will
return an integer value of 0 and an error code is set to the global
variable fErrorCode to indicate the error condition encountered.
Possible error codes and their interpretation are listed below.
2:File specified by fd does not exist.

8:File not opened

10:No more free file space for file extension.

Close a DAT file.

int close(int fd);

If (close(fd)) puts(“file closed!\n™);

#include “LIB_CL.h ”

Close a previously opened or created DAT file whose file handle
is fd.

close returns an integer value of 1 to indicate success. In case of
error, close returns an integer value of 0 and an error code is set to
the global variable fErrorCode to indicate the error condition
encountered. Possible error codes and their interpretation are
listed below.

2:File specified by fd does not exist.

74



delete top
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

fErrorCode :

delete topln

Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

8:File not opened

Remove a specified number of bytes from top (beginning-of-file
position) of a DAT file.

int delete top(int fd);

delete top(fd,100);

#include “LIB_CL.h ”

The delete top function removes the number of bytes specified in
the argument count from a DAT file whose file handle is fd.
Removing of data starts at the beginning-of-file position of the
file. The file pointer position is adjusted accordingly by the
operation. For instance, if initially the file pointer points to the
tenth character, after removing 8 character from the file, the new
file pointer will points to the second character of the file.

The delete top function will resize the file size automatically.
The delete top function returns the number of bytes actually
removed from the file. In case of error, delete top returns an
integer value of -1 and an error code is set to the global variable
fErrorCode to indicate the error condition encountered. Possible
error codes and their interpretation.

2:File specified by fd does not exist.

8:File not opened

9:The value of count is negative.

10:No more free file space for file extension.

Remove a null terminated character string from the top
(beginning-of-file position) of a DAT file.

int delete topln(int fd);

delete topln (fd);

#include “LIB_CL.h ”

The delete topln function removes a line terminated by a null
character file until a null character (\0) or end-of-file is
encountered. The null character is also removed from the file.
Removing of data starts at the top (beginning-of-file position) of
the file, and the file pointer position is adjusted accordingly. The
delete topln function will resize the file size automatically.

The delete_topln function returns the number of bytes actually

removed from the file (includes the null character). In case of

75



fErrorCode :

eof

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

fErrorCode :

filelength

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

fErrorCode :

filelist

Purpose -
Syntax -

error, delete _topln returns an integer value of -1 and an error code
is set to the global variable fErrorCode to indicate the error
condition encountered. Possible error codes and their
interpretation are listed below.

2:File specified by fd does not exist.

8:File not opened

9:The value of count is negative.

10:No more free file space for file extension.

Check if file pointer of a DAT file reaches end of file.

int eof(int fd);

if (eof(fd)) puts(“end of file reached!\n”);

#include “LIB_CL.h ”

The eof function checks if the file pointer of the DAT file whose
file handle is specified in the argument fd, points to end-of-file.
The eof function returns an integer value of 1 to indicate an
end-of-file and a 0 when not. In case of error, eof returns an
integer value of -1 and an error code is set to the global variable
fErrorCode to indicate the error condition encountered.

2:File specified by DBF fd does not exist.

8:File not opened

Get file length information of a DAT file.

long filelength(int fd);

datasize = filelength(fd);

#include “LIB_CL.h ”

The filelength function returns the size in number of bytes of the
DAT file whose file handle is specified in the argument fd.

The long integer value returned by filelength is the size of the
DAT file in number of bytes. In case of error, filelength returns a
long value of -1 and an error code is set to the global variable
fErrorCode to indicate the error condition encountered. Possible
error codes and their interpretation.

2:File specified by fd does not exist.

8:File not opened

Get file directory information.
int filelist(char * file list);

76



Example call :

Includes :

Description :

Returns :

fErrorCode -
Iseek
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns

fErrorCode :

total_file = filelist(file list);

#include “LIB_CL.h ”

The filelist function copies the file name, file type, and file size
information (separated by a blank character) of all files in
existence into a character array specified in the argument dir.
When char * file list = NULL - it will pass the length that the file
string needs back.

When “char*file list”is NULL, it will pass the size of memory
back.

When “char*file list”is NULL, it will pass the quantity of file
back.

None

Move file pointer of a DAT file to a new position.

long Iseek(int fd, long offset, int origin);

Iseek (fd, 512, 0);

#include “LIB_CL.h ”

The Iseek function moves the file pointer of a DAT file whose
file handle is specified in the argument fd to a new position
within the file. The new position is specified with an offset byte
address to a specific origin. The offset byte address is specified
in the argument offset which is a long integer. There are 3
possible values for the argument origin.

The values and their interpretations are listed below.

Value of origin Interpretation
1 beginning of file
0 current file pointer position
-1 end of file

When successful, Iseek returns the new byte offset address of the
file pointer from the beginning of file. In case of error, Iseek
returns a long value of -1L and an error code is set to the global
variable fErrorCode to indicate the error condition encountered.
Possible error codes and their interpretation are listed below.
2:File specified by fd does not exist.

9:1llegal offset value.

10:Illegal origin value.

15:New position is beyond end-of-file.

77



open

Purpose -

Syntax -

Example call :

Includes :

Description :

Returns :

fErrorCode :

read

Purpose -
Syntax -

Example call :

Includes :

Description :

Returns :

Open a DAT file and get the file handle of the file for further
processing.

int open(char *filename);

if (fd = open(“C:\\data\\store.dat’)>0)

_puts(“store.dat opened!”);

#include “LIB_CL.h ”

The open function opens a DAT file specified by filename and
gets the file handle of the file. A file handle is a positive integer
(excludes 0) used to identify the file for subsequent file
manipulations on the file. If the file specified by filename does
not exist, it will be created first. If filename exceeds 8 characters,
it will be truncated to 8 characters long. After the file is opened,
the file pointer points to the beginning

of file.

If open successfully opens the file, it returns the file handle of the
file being opened. In case of error, open will return an integer
value of -1 and an error code is set to the global variable
fErrorCode to indicate the error condition encountered. Possible
error codes and their interpretation are listed below.

1:filename is a NULL string.

6:Can't create file. Because the maximum number of files allowed

in the system is exceeded.

Read a specified number of bytes from a DAT file.

int read(int fd, char *buffer, unsigned count);

if ((bytes_read = read(fd,buffer,50)) ==-1)

_puts(“read error!™);

#include “LIB_CL.h ”

The read function copies the number of bytes specified in the
argument count from the DAT file whose file handle is fd to the
array of characters buffer. Reading starts at the current position of
the file pointer, which is incremented accordingly when the
operation is completed.

The read function returns the number of bytes actually read from
the file. In case of error, read returns an integer value of -1 and an
error code is set to the global variable fErrorCode to indicate the

error condition encountered. Possible error codes and their

78



fErrorCode :

interpretation are listed below.
2:File handle is NULL.

7:1d is not a file handle of a previously opened file.

read error code

Purpose -
Syntax -

Example call :

Includes :

Description :

Returns :

fErrorCode -
readin
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

Get the value of the global variable fErrorCode.

int read_error _code( );

if (read_error code( ) ==2) puts(“File not exist!™);

#include “LIB_CL.h ”

The read error code function gets the value of the global variable
fErrorCode and returns the value to the calling program. The
programmer can use this function to get the error code of the file
manipulation routine previously called. However, the global
variable fErrorCode can be directly accessed without making a
call to this function.

The read error code function returns the value of the global
variable fErrorCode.

None

Read a line terminated by a null character “\0” from a DAT file.
int readIn(int fd, char *buffer, unsigned max count);

readIn(fd, buffer, 50);

#include “LIB_CL.h ”

The readln function reads a line from the DAT file whose file
handle is fd and stores the characters in the character array buffer.
Characters are read until end-of-file encountered, a null character
(\0) encountered, or the total number of characters read equals the
number specified in max_count. The readln function then returns
the number of bytes actually read from the file. The null character
(\0) 1s also counted if read. If the readln function completes its
operation not because a null character is read, there will be no null
character stored in buffer. Reading starts at the current position of
the file pointer, which is incremented accordingly when the
operation is completed.

The readln function returns the number of bytes actually read
from the file (includes the null character if read). In case of error,
readln returns an integer value of -1 and an error code is set to the
global variable fErrorCode to indicate the error condition

encountered. Possible error codes and their interpretation are

79



fErrorCode :

remove

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

fErrorCode :

rename

Purpose -
Syntax -

Example call :

Includes :

Description :

Returns :

fErrorCode :

listed below.
2:File handle is NULL.

7:1d is not a file handle of a previously opened file.

Delete file.

int _remove(char *filename);

if (_remove(C:\\data\\store.dat) puts(“store.dat deleted”);
#include “LIB_CL.h ”

Delete the file specified by filename. If filename exceeds 8
characters, it will be truncated to 8 characters long. If the file to be
deleted is a DBF file, the DBF file and all the index (key)

files associated to it will be deleted altogether.

If remove deletes the file successfully, it returns an integer value
of 1. In case of error, remove will return an integer value of 0 and
an error code is set to the global variable fErrorCode to indicate
the error condition encountered. Possible error codes and their
interpretations are listed below.

1:filename is a NULL string.

2:File specified by filename does not exist.

Change file name of an existing file.

int _rename(char *old filename, char *new_filename);

if (_rename(“C:\\data\\store.dat”,” C:\\data\\text.dat™)
_puts(“store.dat renamed”);

#include “LIB_CL.h ”

Change the file name of the file specified by old_filename to
new_filename. But the route does not change.

If rename successfully changes the file name, it returns an integer
value of 1. In case of error, rename will return an integer value of
0, and an error code is set to the global variable fErrorCode to
indicate the error condition encountered. Possible error codes and
their interpretation are listed below.

1:Either old filename or new_filename is a NULL string.

2:File specified by old_filename does not exist.

3:A file with file name new_filename already exists.

4:File path is error

5:Filename is too long.

6:File is using.

80



tell

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

fErrorCode :

write
Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

fErrorCode :

7:Filename is error

8:Other error

Get file pointer position of a DAT file.

long tell(int fd);

current_position = tell(fd);

#include “LIB_CL.h ”

The tell function returns the current file pointer position of the
DAT file whose file handle is specified in the argument fd. The
file pointer position is expressed in number of bytes from the
beginning of file. For instance, if the file pointer points to the
beginning of file, the file pointer position will be 0.

The long integer value returned by tell is the current file pointer
position in file. In case of error, tell returns a long value of -1 and
an error code is set to the global variable fErrorCode to indicate
the error condition encountered. Possible error codes and their
interpretation are listed below.

2:File handle is NULL.

7:1d is not a file handle of a previously opened file.

Write a specified number of bytes to a DAT file.

int write(int fd, char *buffer, unsigned count);

write(fd, data_buffer,100);

#include “LIB_CL.h ”

The write function writes the number of bytes specified in the
argument count from the character array buffer to a DAT file
whose file handle is fd. Writing of data starts at the current
position of the file pointer, which is incremented accordingly
when the operation is completed.

If the end-of- file condition is encountered during the operation,
the file will be extended automatically to complete the operation.
The write function returns the number of bytes actually written to
the file. In case of error, write returns an integer value of -1 and
an error code is set to the global variable fErrorCode to indicate
the error condition encountered. Possible error codes and their
interpretation are listed below.

2:File handle is NULL.

7:1d is not a file handle of a previously opened file.

81



writeln
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

fErrorCode :

DiskC format
Purpose -
Syntax -
Example call :
Includes -
Description :

Returns :

fErrorCode :

DiskD format
Purpose -

Syntax -

Example call :

10:No more free file space for file extension.

Write a line terminated by a null character (\0) to a DAT file.
The null character is also written to the file. After writing in, file
position will update.

int writeln(int fd, char *buffer);

writeln(fd, data buffer);

#include “LIB_CL.h ”

The writeln function writes a line terminated by a null character
from the character array buffer to a DAT file whose file handle is
fd. Characters are written to the file until a null character (\0) is
encountered. The null character is also written to the file. Writing
of data starts at the current position of the file pointer, which is
incremented accordingly when the operation is completed. If the
end-of-file condition is encountered during the operation, the file
will be extended automatically to complete the operation.

The writeln function returns the number of bytes actually written
to the file (includes the null character). In case of error, writeln
returns an integer value of -1 and an error code is set to the global
variable fErrorCode to indicate the error condition encountered.
Possible error codes and their interpretation are listed below.
2:File handle is NULL.

7:1d is not a file handle of a previously opened file.

9:no null character found in buffer

10:No more free file space for file extension.

Format disk C.

int DiskC format(void);

DiskC format ( );

#include “LIB CL.h ”

The DiskC_format function formats disk C.
0 : Format false °

1 : Format OK -

None

Format disk D.
int DiskD_ format (void);
DiskD format ( );

82



Includes -
Description :

Returns :

fErrorCode :

“LIB_ CL.h

The DiskC_format function formats disk D.
0 : Format false °

1 : Format OK °

None

#include

DiskC totalsize

Purpose -
Syntax -
Example call :
Includes -
Description :

Returns :

fErrorCode :

Checking the total space in disk C.

unsigned int DiskC totalsize (void);

DiskC totalsize ();

“LIB_ CL.h

The DicskC totalsize function returns the used space in disk C.
Ox fffftftf : Disk C unformatted.

Others : The total space in disk C.(Bytes)

None

#include

DiskD totalsize

Purpose -
Syntax -
Example call :
Includes -
Description :

Returns :

fErrorCode :

Checking the total space in disk D.

unsigned int DiskD totalsize (void);

DiskD totalsize ( );

“LIB_ CL.h

The DicskD totalsize function returns the total space in disk D.
Oxfffffftf : Disk D unformatted.

Others : The total space in disk D.(Bytes)

None

#include

DiskC usedsize

Purpose -
Syntax -
Example call :
Includes -
Description :

Returns :

fErrorCode :

Checking the used space in disk C.

unsigned int DiskC usedsize (void);

DiskC usedsize ();

“LIB_ CL.h

The DicskC usedsize function returns the used space in disk C.
Oxfffffftf : Disk C unformatted.

Others : The used space in disk C.(Bytes)

None

#include

DiskD usedsize

Purpose -
Syntax -
Example call :
Includes -

Description :

Checking the used space in disk D.
unsigned int DiskD usedsize (void);
DiskD usedsize ();

“LIB_ CL.h

The DicskD usedsize function returns the used space in disk D.

#include

83



Returns :

fErrorCode :

Ox Tttt : Disk D unformatted.
Others : The used space in disk D.(Bytes)

None

DicskC freesize

Purpose -
Syntax -
Example call :
Includes -
Description :
Returns :

fErrorCode :

Checking the free space in disk C.

unsigned int DiskC_freesize (void);

DiskC freesize( );

“LIB_ CL.h

The DicskC _freesize function returns the free space in disk C.
Ox Tttt : Disk C unformatted.

Others : The free space in disk C.(Bytes)

None

#include

DicskD freesize

Purpose -
Syntax -

Example call :
Includes -
Description :
Returns :

fErrorCode :

& LED

set led
Purpose -
Syntax -

Example call :

Includes :

Description :

Returns

Checking the free space in disk D.

unsigned int DiskD freesize (void);

DiskD freesize( );

“LIB_ CL.h

The DicskD freesize function returns the free space in disk D.
Ox Tttt : Disk C unformatted.

Others : The free space in disk D.(Bytes)

None

#include

To set the LED indicators

int set_led(int led, int mode, int duration);
set led(LED_RED, LED FLASH, 30);
#include “LIB_CL.h ”

led description
LED GREEN LED moving display green light.
LED RED LED moving display red light.
mode description
LED OFF off for (duration X 0.01) seconds then on
LED ON on for (duration X 0.01) seconds then off
LED FLASH flash, on then off each for (duration X
0.01) seconds then repeat
none

84



€ Keypad

clr kb

Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

dis_alpha

Purpose -
Syntax -
Example call :
Includes :

Description :

Returns

en_alpha

Purpose -
Syntax -
Example call :
Includes
Description :

Returns

To clear the keyboard buffer.

void clr_kb(void);

clr kb();

#include “LIB_CL.h ”

The clr_kb function clears the keyboard buffer. This function is
automatically called by the system program upon power up.

none

Disable alphabet key stroke processing.

void dis_alpha(void);

dis_alpha();

#include “LIB_CL.h ”

The dis_alpha function disables the alphabet key stroke processing.
If the alpha lock status is on prior to calling this function, it will
become off after calling this function.

none

Enable alphabet key stroke processing.

void en_alpha(void);

en_alpha( );

#include “LIB_CL.h

The en_alpha function enables the alphabet key stroke processing.

none

get alpha enable state

Purpose -
Syntax -
Example call :
Includes

Description :

Returns

Get the status of the alphabet key stroke processing.

void get_alpha enable_state (void);

get alpha_enable_state ();

#include “LIB_CL.h

This routine gets the current status, enable/disable, of the alphabet
key stroke processing. The default is enabled.

1, if the alphabet key stroke processing is enabled.

0, if disabled.

get alpha lock state

Purpose -
Syntax -

Get alpha lock state information.

void get_alpha lock state(void);

85



Example call :
Includes :

Description :

Returns :

getchar

Purpose -
Syntax -

Example call :

Includes :

Description :

Returns :

GetKeyClick
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

kbhit

Purpose -
Syntax -
Example call :

Includes :

get alpha lock state ();

#include “LIB_CL.h ”

This routine gets the current status, enable/disable, of the alphabet
key stroke processing. The default is enabled. When
“alphapurpose” is locked, the keypad status is only for English.

1, if alpha key is locked.

0, if alpha key is not locked.

Get one key stroke from the keyboard buffer.

char getchar(void);

c=_getchar ();

if (c>0) printf(“Key %d pressed”,c);

else printf(“No key pressed”);

#include “LIB_CL.h ”

The getchar function reads one key stroke from the keyboard
buffer and then removes the key stroke from the keyboard buffer.
It will pass the value back, and clear the buffer. If there is no any
key press before, it will pass NULL(0X00) back.

The getchar function returns the key stroke read from the keyboard
buffer. If the keyboard buffer is empty, a null character (0x00) is
returned. The keystroke returned is the ASCII code of the key

being pressed.

Get current key click status

int GetKeyClick(void);

state = GetKeyClick( );

#include “LIB_CL.h ”

The function returns an integer indicates the key click staus.The
default is enabled.

1, if key click sound is enabled.

0, if key click sound is disabled.

Check whether the keyboard buffer is empty.

int _kbhit(void);

For ( ;! kbhit( ); ); /*Waiting for any key be pressed*/
#include “LIB_CL.h ”

86



Description :

Returns :

The kbhit function checks if there is any character waiting to be
read from the keyboard buffer. But it does clear the data of buffer.
If the keyboard buffer is empty, the kbhit function returns an

integer value of 0, 1 if not.

set alpha lock

Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

SetKeyClick

Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

Set alpha lock state.

void set_alpha lock(int status);

set_alpha lock (1);

#include “LIB_CL.h ”

This routine turns on or off the alpha lock.
1, if alpha key is locked.
0, if alpha key is not locked.

none

To enable / disable the key click sound.

void SetKeyClick(int status);

SetKeyClick(1); /* enable the key click sound */
#include “LIB_CL.h ”

This routine truns on or off the key click sound
1, if key click sound is enabled.

0, if key click sound is disabled.

none

FNKey GetState

Purpose -
Syntax -

Example call :

Includes :

Description :

Returns :

To check the FN-Key setting that is custom or default.
char FNKey GetState(short smKeyNum)
if (FNKey GetState(0))
_printf(“FN + 0 key is custom setting”);
“LIB_ CL.h
You can check the FN-Key function that is default setting or
custom setting. Only check FN + 0~9.
1 : Custom Setting °
0 : Default Setting °

-1: Error

#include

EFNKey SetUserDef

Purpose -
Syntax -

Example call :

To set a custom setting for FN-Key.

char FNKey SetUserDef(short smKeyNum, void
(*pslFunction)(void));

void Sample01FN(void)

87



_printf(“This is Test!!”);

b
void SetFNKey(void)
{
if (FNKey SetUserDef(0, Sample01FN))
{
_printf(*“Set FN+0 UserDefine OK!™);
b
if (FNKey SetUserDef(0, NULL))
{
_printf(*“Set FN+0 Default OK!™);
b
b

Includes :  #include “LIB CL.h ”

Description :  The function is used to set the FN-Key. After set successed, the
FN-Key is changed for custom setting function. You can set FN +
0~9, if you want to set default, please set pslFunction = NULL.

Returns @ 1 : Set success °
0 : Set false °

¢ LCD

clr_eol
Purpose ©  Clear from where the cursor is to the end of the line. The cursor
position is not affected after the operation.
Syntax :  void clr_eol(void);
Example call ©  clr_eol();
Includes ©  #include “LIB CL.h ”
Description :  The clr_eol function clears from where the cursor is to the end of the
line, and then moves the cursor to the original place.
Returns ©  None
clr_rect
Purpose :  Clear a rectangular area on the LCD display. The cursor position is
not affected after the operation.
Syntax .  void clr_rect(int left, int top, int width, int height);

88



Example call :
Includes :

Description :

Returns :
clr_scr
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns

DecContrast

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns -

fill rect
Purpose -
Syntax -
Example call :
Includes :

Description :

clr_rect(10,5,30,10 );

#include “LIB_CL.h ”

The clr_rect function clears an rectangular area on the LCD display
whose top left position and size are specified by left, top, width, and
height. The cursor position is not affected after the operation. Several

introduces the argument as follows:

left Clear form the start point of X-axis.
top Clear form the start point of Y-axis.
width Clear the width form the start point.
height Clear the high form the start point.
None
Clear LCD display.

void clr_scr(void);

clr_scr();

#include “LIB_CL.h ”

The clr_scr function clears the LCD display and places the cursor at
the first column of the first line, that is (0,0) as expressed with the
coordinate system.

None

Decrease the LCD contrast

void DecContrast(void);

DecContrast ( );

#include “LIB_CL.h ”

The DecContrast function will decrease the LCD contrast by one
level whenever it is being called. However, the lowest contrast is 0.

None

Fill a rectangular area on the LCD display.
void fill_rect(int left, int top, int width, int height);
fill rect (10,5,30,10);
#include “LIB_CL.h ”
The fill_rect function fills a rectangular area on the LCD display
whose top left position and size are specified by left, top, width, and
height. The cursor position is not affected after the operation.Several
introduces the argument as follows:

left Fill form the start point of X-axis.

89



Returns -
GetCursor
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

GetFont
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns

get_image
Purpose -

Syntax -
Example call :
Includes -

Description :

top Fill form the start point of Y-axis.
width Fill the width form the start point.
height Fill the high form the start point.

None

Get current cursor status.

int _GetCursor(void);

if (_GetCursor( ) ==0) puts(“Cursor Off”);
#include “LIB_CL.h ”

The GetCursor function checks if the cursor is visible or not.

The GetCursor function returns an integer of 1 if the cursor is visible

(turned on), 0 if not.

Get current font information.

int GetFont(void);

if (GetFont == FONTID 12) puts (“Font : 12x8”);

#include “LIB_CL.h

The GetFont function returns the information about the current font
type. Only for English letter.

0 : Font 8x8 -

1 : Font 12x8 «

Read the bitmap pattern of a rectangular area on the LCD display.
void get image(int left, int top, int width, int height, void *pat);
get_image(10,10,80,50,buffer);

#include “LIB_CL.h ”

The get image function copies the bitmap pattern of a rectangular
area on the LCD display whose top left position and size are
specified by left, top, width, and height to the buffer specified by pat.
The cursor position is not affected after the operation.

It store in appointed buffer. Several introduces the argument as

follows:
left Gather form the start point of X-axis.
top Gather form the start point of Y-axis.
width Gather the width form the start point.
height Gather the high form the start point.
pat Store the buffer that has all gathering data of

image.

90



Returns :

gotoxy

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns

IncContrast
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns

lcd backlit

Purpose -
Syntax -
Example call :
Includes :

Description :

Returns

putchar

Purpose -
Syntax -
Example call :

Includes :

None

Move cursor to new position.

int gotoxy(int X_position, int y_position);

gotoxy(3,2);/* Move to second line of the third row */
#include “LIB_CL.h ”

The gotoxy function moves the cursor to a new position whose

coordinate is specified in the argument x position and y_position.

Normally the gotoxy function will return an integer value of 1 when
operation completes. In case of LCD fault, 0 is returned to indicate

€rror.

Increase the LCD contrast

void IncContrast(void);

IncContrast( );

#include “LIB_CL.h

The IncContrast function will increase the LCD contrast by one level
whenever it is being called. However, the highest contrast level is 7.
None

Set LCD backlight

void lcd_backlit(int state);

lcd_backlit(1);/*start LCD backlight*/

#include “LIB_CL.h ”

The lcd_backlit turns the LCD backlight on or off depending on the
value of state. The backlight will be on if state is 1, off if 0.

The system global variable BKLIT TIMEOUT can be used to specify
the backlight duration in unit of second. But if this value is set to zero,
the backlight will be on until the backlight state is set to off or user turn
off it manually. The value of BKLIT TIMEOUT is 0 to 9, time of
backlight is 3*(1+BKLIT TIMEOUT) second.

None

Display a character on the LCD display.
int _putchar(char c);

_putchar(‘A’);

#include “LIB_CL.h ”

91



Description :

Returns -
_buts
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

SetContrast
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

SetCursor
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

SetFont

The putchar function sends the character specified in the argument ¢
to the LCD display at the current cursor position and moves the
cursor accordingly.

None

Display a string on the LCD display.

char puts (char* string)

_puts(“Hello World”);

#include “LIB_CL.h ”

The puts function sends a character string whose address is specified
in the argument string to the LCD display starting from the current
cursor position. The cursor is moved accordingly as each character of
string is sent to the LCD display. The operation continues until a
terminating null character is encountered.

The puts function returns the number characters sent to the LCD

display

To set contrast level for the LCD

void SetContrast(int level);

SetContrast(5);

#include “LIB_CL.h ”

The SetContrast function is used to set the contrast level for LCD.
The valid level is ranging from 0 to 11. The higher value, the higher
contrast.

None

Turn on or off the cursor of the LCD display.

void SetCursor(int status);

SetCursor (1);

#include “LIB_CL.h ”

The SetCursor function displays or hides the cursor of the LCD
display according to the value of status specified. If status equals 1,
the cursor will be turned on to show the current cursor position. If
status equals 0, the cursor will be invisible.

None

92



Purpose -
Syntax -
Example call :
Includes -

Description :

Returns

show image

Purpose -
Syntax -

Example call :
Includes -

Description -

Returns :

Notice :

wherex
Purpose -
Syntax -
Example call :

Includes :

Select the font to be used afterwards.

int SetFont(int font);

SetFont (1);/*Font size is 12x8*/

#include “LIB_CL.h ”

The SetFont function selects the font specified by font to be used

following this call. The valid values are as follow

font action
FONT 8X8 Font size is 8x8
FONT 12X8 Font size is12x8

None

Put a rectangular bitmap to the LCD display.

void show_image(int left, int top, int width, int height, const void
*pat);

show image (10,5,60,30,buffer);

#include “LIB_CL.h ”

The showet_image function displays a rectangular bitmap specified
by pat to the LCD display. The rectangular’ s top left position and
size are specified by left, top, width, and height. The cursor position

is not affected after the operation.

left Display form the start point of X-axis.

top Display form the start point of Y-axis.
width Display the width form the start point.
height Display the high form the start point.

pat The buffer that you want to display data of

image.
none
If you want to show a two bits file of BMP, you can change the
format by using SDKUtility, and write into the buffer. After that, it
will show on PT-10’s LCD.

Get x-coordinate of the cursor location.
int wherex(void);

X_position = wherex( );

#include “LIB_CL.h ”

93



Description :

Returns -
wherexy
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

wherey
Purpose -

Syntax -
Example call :
Includes -

Description :

Returns :

showlogo std

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns

show bitmap

Purpose -
Syntax -
Example call :

Includes :

The wherex function determines the current x-coordinate location of
the cursor.

The wherex function returns the x-coordinate of the cursor location.

Get x-coordinate and y-coordinate of the cursor location

int wherexy(int* column, int* row);

wherexy(&x_position,&y position);

#include “LIB_CL.h ”

The wherexy function copies the value of x-coordinate and
y-coordinate of the cursor location to the variables whose address is
specified in the arguments column and row.

None

Get y-coordinate of the cursor location.

int wherey(void);

y_position = wherey( );

#include “LIB_CL.h ”

The wherey function determines the current y-coordinate location of
the cursor.

none

Show the default LOGO.

void showlogo std(void);

showlogo std( );

#include “LIB CL.h ”

The function can show the default LOGO.The default logo can be
changed by ArgoLink download. The name of LOGO file must be
“@LOGO.bmp”, and its format must be 128*64, and mono-color, if
your bitmap file is not this format, you will download fail.

none

Put a rectangular bitmap to the LCD display.
void show_bitmap(int left, int top, const void *pat, int buf size);
show_bitmap(10, 5, pat, 1000);

#include “LIB CL.h ”

94



Description :

Returns

The show_bitmap function displays a rectangular bitmap specified
by pat to the LCD display. The rectangular’ s top left position and
size are specified by left, top. The cursor position is not affected after

the operation.

left Display form the start point of X-axis.
top Display form the start point of Y-axis.
pat The buffer that you want to display data of

bitmap.Yuo can open the bitmap file and load
it’s data to the buffer.
buf size The size of bitmap image buffer.

nonec

€ Communication Ports

clear com

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns

close com

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns

com_cts

Purpose -
Syntax -

Clear receive buffer

void clear com(int port);

clear com(1);

#include “LIB_CL.h ”

This routine is used to clear all data stored in the receive buffer. This
can be used to avoid mis-interpretation when overrun or other error
occurred. Use the argument “port” as the connect port which is chosen
to open . Now we only can choose 1(COM 1).

None

To close specified communication port

void close_com(int port);

close_com(1);

#include “LIB_CL.h ”

The close com disables the communication port specified. Use the
argument “port” as the
only can choose 1(COM 1).

None

connect port which is chosen to open . Now we

Get CTS level

int close_com(int port);

95



Example call :

Includes :

Description :

Returns :

com_eot
Purpose -
Syntax -
Example call :
Includes -

Description :

Returns :

com overrun

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns

com rts
Purpose -
Syntax -
Example call :
Includes -

Description :

if (com_cts(1) ==0) printf(“COM 1 CTS is space);

else printf(“COM 1 CTS is mark™);

#include “LIB_CL.h ”

This routine is used to check current CTS level. Use the argument
“port” as the connect port which is chosen to open. Now we only can
choose 1(COM 1).

1 : allow to deliver

0 : not allow to deliver

To see if any COM port transmission in process (End Of Transmission)
int com_eot(int port);

while (com_eot(1) !=0x00); write_com(1,”"NEXT STRING™);
#include “LIB_CL.h ”

This routine is used to check if prior transmission is still in process or
not. Use the argument “port” as the connect port which is chosen to
open . Now we only can choose 1(COM 1).

0, prior transmission still in course

1, transmission completed

-1, the transmitting port choices error

See if overrun error occurred

int com_overrun(int port);

if (com_overrun(1) > 0) clear com(1);

#include “LIB_CL.h”

This routine is used to see if overrun met. The overrun flag is
automatically cleared after examined. Only can choice “1” now
(COM 1) -

1, overrun error met

0, OK

-1, the transmitting port choices error

Set RTS signal

void com_rts(int port, int val);

com_rts(1,1);

#include “LIB_CL.h ”

This routine is used to control the RTS signal. It works even when the
CTS flow control is selected. However, RTS might be changed by the

background routine according to receiving buffer status. It is strongly

96



Returns

nwrite com
Purpose -
Syntax -

Example call :

Includes :

Description :

Returns :

open_com

Purpose -
Syntax -

Example call :

Includes :

Description :

recommended not to use this routine if CTS control is utilized. Use the
argument “port” as the connect port which is chosen to open. Now we
only can choose 1(COM 1).

The argument “val” is set up RTS, 1 is ok for receiving data; 0 is error.

None

Send a specific number of characters out through RS232 port

int nwrite_com(int port, char *s, int count);

char s[20]={"Hello World\n’};

nwrite_com(1,s,5);/*send string “Hello” to connect port*/

#include “LIB_CL.h”

This routine is used to send a specific number of characters specified by
count through RS232 ports. If any prior transmission is still in process,
it is terminated then the current transmission resumes. The character
string is transmitted one by one until the specified number of character
is sent. Use the argument “port” as the connect port which is chosen to
open. Now we only can choose 1(COM 1). The argument “count” is the
number of words of sending data.

-1 : error

Other value: the number of words that success writing into.

Initialize and enable specified RS232 port

int open_com(int com_port, int setting);
open_com(1,0x0b);/*openCOM1 - baud rate 38400,8 data bits,no
parity,no handshake*/

#include “LIB_CL.h ”

The open_com function initializes the specified RS-232 port. It clears
the receive buffer, stops any data transmission under going, reset the
status of the port, and set the RS-232 specification according to
parameters set. Use the argument “port” as the connect port which is
chosen to open. Now we only can choose 1(COM 1).

Each bit of the argument “setting” :

DO baud rate 0:115200 1-2 : 57600
~ 3:38400 4:19200
D2 5:9600

6-7 : 4800

97



D3 data bits 0 : 7bits 1 : 8bits

D4 Parity enable 0 : disable 1 : enable
D5 even / odd 0:odd 1:even

D6 flow control 0 : disabe 1 : enable
D7 flow control method 0 : CTS/RTS 1 : Reserved

Returns © 0 : Open fail
1 : Open success

Remark ©  When flow control set up disable and flow control method set up
CTS/RTS. The maximum of transmitting information restricts to 2KB
for each time. You must wait this transmitting over, that can start next

one, or be error.

read com
Purpose '  Read 1 byte from the RS232 receive buffer
Syntax : int read com(int port, char *c);
Example call ©  charc;
nt i;
i=read com(1,c);
if (1) _printf(“‘char %c received from COM1”,*c);
Includes :  #include “LIB_CL.h”

Description - This routine is used to read one byte from the receive buffer and then
remove it from the buffer. However, if the buffer is empty, no action is
taken and O is returned. Use the argument “port” as the connect port
which is chosen to open. Now we only can choose 1(COM 1).

Returns 1, available or 0 if buffer is empty
SetCommType

Purpose ©  Set the communication type of the port specified.

Syntax :  int SetCommType(int port, int type);
Example call :  SetCommType(1,0);/*set up the connect type is RS232%*/
Includes :  #include “LIB_CL.h”

Description - This routine is used to set the communication types for the COM ports.
Before opening the COM port, please call this function to assign
communication type. Use the argument “port” as the connect port which
is chosen to open. Now we only can choose 1(COM 1). The argument
“type” is for setting up the connect type, 0 is the RS232 cable
transmitted; lis the Cradle transmitted. If you choice Cradle, the
transmitted type forces to setup to 8 data bits > no Parity » 1 stop bit >
115200bps * no parity °

98



Returns :

write com

Purpose -
Syntax :

Example call :

Includes :

Description :

Returns :

1 for valid setting (successful), O for invalid setting (failed).

Send a string out through RS232 port

int write_com(int port, char *s);

char s[20]={“Hello World\n’};

write_com(1,s);

#include “LIB_CL.h ”

This routine is used to send a string through RS232 ports. If any prior
transmission is still in process, it is terminated then the current
transmission resumes. The character string is transmitted one by one
until a NULL character is met. A null string can be used to terminate
prior transmission. Use the argument “port” as the connect port which is
chosen to open. Now we only can choose 1(COM 1).

None

€ Keyboard Wedge

Definition of the WedgeSetting array :

Subscriptor Bit Description

0 7.0 Keyboard / Collector Type,1 = US Keyboard,101 =
Turkish Q Keyboard.

1 7 Reserve.

1 6 Reserve.

1 5 1:Ignore alphabets case.
0:Alphabets are case sensitive.
00,01,10:Reserve.

1 4-3 . ..
11:digits are upper position

1 2-1 Reserve.

1 0 1:use numeric key pad to transmit digits
0:use alpha-numeric key to transmit digits

2 7-0 inter-character delay(0~255ms)
1:Use NoteBook

3 7-0 0:Use PC.

Composition of Output String
The keyboard wedge character mapping is shown below. When the SendData

routine transmits data, each character in the output string is translated by this table

00 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 || Dly:
0 F2 SP 0 @ P A p © delay 100ms.
©~@:
99 Digits of Numeric
Key Pad.

CR*:Enter key on




1 INS F3 ! 1 A Q a q ®
2 DLT F4 " 2 B R b r ®
3 Home F5 # 3 C S C s ®
4 End F6 $ 4 D T d t @
5 Up F7 % 5 E U e u ®
6 Down F8 & 6 F \Y} f v ®
7 Left F9 ' 7 G w g w @
8 BS F10 ( 8 H X h X
9 | HT(TAB) | F11 ) 9 | Y i y ®
A LF F12 * J Z | z

B Right ESC + ; K [ k {

C PgUp Exec , < L \ I |

D CR CR* - = M ] m }

E PgDn > N N n ~

F F1 / ? O _ o] Dly

0xCO : Indicates that the next character is to be treated as scan code. Transmit it as it
is, no translation required.

0xCO0 | 0x01 : Send next character with Shift key.

0xCO0 | 0x02 : Send next character with left Ctrl key.

0xCO0 | 0x04 : Send next character with left Alt key.

0xCO0 | 0x08 : Send next character with right Ctrl key.

0xCO0 | 0x10 : Send next character with right Alt key.

0xCO0 | 0x20 : Clear all combination status key after sending the next character.

WedgeOpen
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns

WedgeClose
Purpose -
Syntax -
Example call :
Includes :

Description :

Open the keyboard wedge transmission.

void WedgeOpen(void);

WedgeOpen();

#include “LIB CL.h ”

Before sending data, you have to set WedgeSetting array and use this
function to initial the transmission.

You cannot use COM PORT functions after use this function.

None -

Close the keyboard wedge transmission.

void WedgeClose(void);

WedgeClose();

#include “LIB CL.h ”

This function can close the keyboard wedge transmission.

After close the keyboard wedge transmission, you can use the COM
PORT functions.

100



Returns :

WedgeReady

Purpose -
Syntax -

Example call :

Includes :

Description :

Returns -
SendData
Purpose -
Syntax -
Example call :
Includes :

Description :

Returns :

€ System

None -

Check if the keyboard cable is connected or not.
int WedgeReady(void);
1f(WedgeReady())
SendData(CodeBuf);
“LIB_ CL.h

Before sending data via keyboard interface, it is recommended to

#include

check the cable status first, otherwise the transmission may be
blocked.
None -

Send a string to keyboard interface.
void ScanData(char* out_str);
SendData(CodeBuf);

“LIB_ CL.h

SendData routine transmits a string pointed by out_str to the

#include

keyboard interface.

None.

SysSuspend
Purpose :  Shut down the system.
Syntax :  void SysSuspend(void);
Example call :  SysSuspend( );
Includes :  #include “LIB CL.h ”
Description - This function will shut down the system.When power on, the system
will resume or restart itself, depending on the system setting.
Returns ©  None.
SetPowerOnState
Purpose ©  Set power on state.
Syntax :  void SetPowerOnState(int slState);
Example call :  SetPowerOnState (0);
Includes : #include “LIB CL.h ”
Description :  The SetPowerOnState is used to set power on state.
sIState Power on state

0 Resume

101



Returns :

1 Reset

None.

SetAutoOffTimer

Purpose -
Syntax -
Example call :
Includes -

Description :

Returns

GetKernel\Ver

Purpose -
Syntax -

Example call :

Includes :
Description -

Returns

€ Power

get_vmain
Purpose -

Syntax -

Example call :

Includes :

Description -

Returns :

€ Other

Set auto off timer.
void SetAutoOffTimer(int sITimer);
SetAutoOftTimer (0);

#include “LIB CL.h ”

The SetAutoOffTimer function is used to set auto power off function.

slTimer Auto off Timer
0 No auto power off
1~9 slTimer * 30 sec.

None.

Get KERNEL version.

void GetKernelVer(char * StrBuf);

char StrBuffer[10];

GetKernel Ver(StrBuffer);

#include “LIB _CL.h ”

This function can get KERNEL version.
None

Get voltage level of the main power supply °

unsigned int get vmain(void);

unsigned int i;

i=get vmain();

“LIB CL.h ”

This function reads the voltage level of the main power in units of
mV.

The minimum\maximum battery voltage that PT can operate with
2.3V ~ 3.5V. Each battery level display as follow:

#include

Battery Display Level Voltage(V)
Level 3 2.6~
Level 2 2.5~2.6
Level 1 2.4~2.5

Level O(bettery low) ~2.4

The voltage level of the main power in units of mV.

102



prc_menu

Purpose ©  Create a menu-driven interface.
Syntax :  void prc. menu(MENU *menu);
Example call :  MENU_ENTRY Menu 01 = {0,1,"1.Test Menu
01",FuncMenu 01,0};
MENU_ENTRY Menu 02 = {0,2,"2.Test Menu
02",FuncMenu 02,0};
MENU_ENTRY Menu 03 = {0,3,"3.Test Menu
03",FuncMenu 03,0};

void prc_menu_Test(void)

{
MENU Menu_Test = {3,1,0,"Menu
Test!!",{&Menu_01,&Menu_02,&Menu_03}};
prc_menu(&Menu_Test);

b

void FuncMenu_01(void)

{

/*to do :add your own program code here*/

b

void FuncMenu_02(void)

{

/*to do :add your own program code here*/

b

void FuncMenu_03(void)

{

/*to do :add your own program code here*/

b

Includes ©  #include “LIB_CL.h ”

Description - The prc_menu function is used to create a user-defined menu.
SMENU and MENU structures are defined in "LIB_CL.h”. Users
can just fill the MENU structure and call the prc_menu function to
build a hierarchy menu-driven user interface.

Returns ©  None

103



